Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Johrendt, Dirk

  • Google
  • 6
  • 24
  • 155

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022The kagomé metals RbTi3Bi5 and CsTi3Bi541citations
  • 2019Solid Solutions of Grimm–Sommerfeld Analogous Nitride Semiconductors II‐IV‐N2 (II=Mg, Mn, Zn; IV=Si, Ge): Ammonothermal Synthesis and DFT Calculations21citations
  • 2019Solid Solutions of Grimm–Sommerfeld Analogous Nitride Semiconductors II‐IV‐N<sub>2</sub> (II=Mg, Mn, Zn; IV=Si, Ge): Ammonothermal Synthesis and DFT Calculations21citations
  • 2015[(Li0.8Fe0.2)OH]FeS and the ferromagnetic superconductors [(Li0.8Fe0.2)OH]Fe(S1−xSex) (0 < x ≤ 1)33citations
  • 2013Ce4Ag3Ge4O0.5 - chains of oxygen-centered OCe2Ce2/2] tetrahedra embedded in a CeAg3Ge4] intermetallic matrix4citations
  • 2009The layered iron arsenide oxides Sr2CrO3FeAs and Ba2ScO3FeAs35citations

Places of action

Chart of shared publication
Wilson, Stephen D.
1 / 4 shared
Werhahn, Dominik
1 / 1 shared
Hay, Aurland K.
1 / 1 shared
Seshadri, Ram
1 / 10 shared
Ortiz, Brenden R.
1 / 5 shared
Chau, Thanh G.
2 / 2 shared
Rackl, Tobias
2 / 2 shared
Minar, Jan
1 / 6 shared
Mallmann, Mathias
2 / 3 shared
Schnick, Wolfgang
2 / 28 shared
Niklaus, Robin
2 / 2 shared
Benz, Maximilian
2 / 3 shared
Minár, Ján
1 / 11 shared
Pachmayr, Ursula E.
1 / 1 shared
Huppertz, Hubert
1 / 8 shared
Rayaprol, Sudhindra
1 / 2 shared
Heymann, Gunter
1 / 9 shared
Poettgen, Rainer
1 / 2 shared
Riecken, Jan F.
1 / 1 shared
Hummel, Franziska
1 / 1 shared
Tegel, Marcus
1 / 1 shared
Pöttgen, Rainer
1 / 78 shared
Lackner, Sebastian
1 / 1 shared
Schellenberg, Inga
1 / 2 shared
Chart of publication period
2022
2019
2015
2013
2009

Co-Authors (by relevance)

  • Wilson, Stephen D.
  • Werhahn, Dominik
  • Hay, Aurland K.
  • Seshadri, Ram
  • Ortiz, Brenden R.
  • Chau, Thanh G.
  • Rackl, Tobias
  • Minar, Jan
  • Mallmann, Mathias
  • Schnick, Wolfgang
  • Niklaus, Robin
  • Benz, Maximilian
  • Minár, Ján
  • Pachmayr, Ursula E.
  • Huppertz, Hubert
  • Rayaprol, Sudhindra
  • Heymann, Gunter
  • Poettgen, Rainer
  • Riecken, Jan F.
  • Hummel, Franziska
  • Tegel, Marcus
  • Pöttgen, Rainer
  • Lackner, Sebastian
  • Schellenberg, Inga
OrganizationsLocationPeople

article

Solid Solutions of Grimm–Sommerfeld Analogous Nitride Semiconductors II‐IV‐N<sub>2</sub> (II=Mg, Mn, Zn; IV=Si, Ge): Ammonothermal Synthesis and DFT Calculations

  • Chau, Thanh G.
  • Rackl, Tobias
  • Minár, Ján
  • Mallmann, Mathias
  • Schnick, Wolfgang
  • Niklaus, Robin
  • Johrendt, Dirk
  • Benz, Maximilian
Abstract

<jats:title>Abstract</jats:title><jats:p>Grimm–Sommerfeld analogous II‐IV‐N<jats:sub>2</jats:sub> nitrides such as ZnSiN<jats:sub>2</jats:sub>, ZnGeN<jats:sub>2</jats:sub>, and MgGeN<jats:sub>2</jats:sub> are promising semiconductor materials for substitution of commonly used (Al,Ga,In)N. Herein, the ammonothermal synthesis of solid solutions of II‐IV‐N<jats:sub>2</jats:sub> compounds (II=Mg, Mn, Zn; IV=Si, Ge) having the general formula (II<jats:sup>a</jats:sup><jats:sub>1−<jats:italic>x</jats:italic></jats:sub>II<jats:sup>b</jats:sup><jats:sub><jats:italic>x</jats:italic></jats:sub>)‐IV‐N<jats:sub>2</jats:sub> with <jats:italic>x</jats:italic>≈0.5 and ab initio DFT calculations of their electronic and optical properties are presented. The ammonothermal reactions were conducted in custom‐built, high‐temperature, high‐pressure autoclaves by using the corresponding elements as starting materials. NaNH<jats:sub>2</jats:sub> and KNH<jats:sub>2</jats:sub> act as ammonobasic mineralizers that increase the solubility of the reactants in supercritical ammonia. Temperatures between 870 and 1070 K and pressures up to 200 MPa were chosen as reaction conditions. All solid solutions crystallize in wurtzite‐type superstructures with space group <jats:italic>Pna</jats:italic>2<jats:sub>1</jats:sub> (no. 33), confirmed by powder XRD. The chemical compositions were analyzed by energy‐dispersive X‐ray spectroscopy. Diffuse reflectance spectroscopy was used for estimation of optical bandgaps of all compounds, which ranged from 2.6 to 3.5 eV (Ge compounds) and from 3.6 to 4.4 eV (Si compounds), and thus demonstrated bandgap tunability between the respective boundary phases. Experimental findings were corroborated by DFT calculations of the electronic structure of pseudorelaxed mixed‐occupancy structures by using the KKR+CPA approach.</jats:p>

Topics
  • compound
  • phase
  • semiconductor
  • nitride
  • powder X-ray diffraction
  • chemical composition
  • density functional theory
  • space group
  • constant potential amperometry
  • spectroscopy