Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ababougirard, Soraya

  • Google
  • 1
  • 7
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Bismuth‐Decorated Silicon Photocathodes for CO<sub>2</sub>‐to‐Formate Solar‐Driven Conversion9citations

Places of action

Chart of shared publication
Fabre, Bruno
1 / 26 shared
Lou, Yaoyin
1 / 2 shared
Mériadec, Cristelle
1 / 4 shared
Loget, Gabriel
1 / 15 shared
Geneste, Florence
1 / 5 shared
Fu, Dong
1 / 2 shared
Tourneur, Jeoffrey
1 / 4 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Fabre, Bruno
  • Lou, Yaoyin
  • Mériadec, Cristelle
  • Loget, Gabriel
  • Geneste, Florence
  • Fu, Dong
  • Tourneur, Jeoffrey
OrganizationsLocationPeople

article

Bismuth‐Decorated Silicon Photocathodes for CO<sub>2</sub>‐to‐Formate Solar‐Driven Conversion

  • Fabre, Bruno
  • Lou, Yaoyin
  • Mériadec, Cristelle
  • Ababougirard, Soraya
  • Loget, Gabriel
  • Geneste, Florence
  • Fu, Dong
  • Tourneur, Jeoffrey
Abstract

<jats:title>Abstract</jats:title><jats:p>The integration of metal‐based catalysts onto semiconducting electrodes provides a real benefit for the CO<jats:sub>2</jats:sub> electrochemical conversion because it allows the electrochemical process to be activated by photogenerated electrons. In that context, we report here that silicon photocathodes modified with electrodeposited Bi nanostructures are highly active for the photoelectrocatalytic conversion of CO<jats:sub>2</jats:sub> to formate. Through the consumed electrical charge and the electrodeposition time, it is possible to finely control both the structure and the density of the deposited catalyst. The optimal photocathode was prepared by using a 5 s electrodeposition time and exhibited the highest photocurrent density (−24.1 mA cm<jats:sup>−2</jats:sup>) with partial formate photocurrent density <jats:italic>j</jats:italic><jats:sub>formate</jats:sub>=−17.4 mA cm<jats:sup>−2</jats:sup> at −1.03 V vs Reversible Hydrogen Electrode (RHE), i. e. a 0.84 V overpotential for CO<jats:sub>2</jats:sub> to formate conversion in CO<jats:sub>2</jats:sub>‐saturated 0.5 M KHCO<jats:sub>3</jats:sub> solution. Such values highlight the excellent photoelectrocatalytic activity of our photocathodes.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • Hydrogen
  • Silicon
  • electrodeposition
  • Bismuth