Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mendes, Tiago

  • Google
  • 2
  • 7
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Single‐ion conducting polymer as lithium salt additive in polymerized ionic liquid block copolymer electrolyte8citations
  • 2020Polymerized Ionic Liquid Block Copolymer Electrolytes for All-Solid-State Lithium-Metal Batteries27citations

Places of action

Chart of shared publication
Goujon, Nicolas
2 / 7 shared
Forsyth, Maria
2 / 42 shared
Howlett, Patrick
2 / 13 shared
Barlow, Kristine J.
1 / 1 shared
Zhu, Haijin
1 / 6 shared
Malic, Nino
1 / 1 shared
Postma, Almar
1 / 9 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Goujon, Nicolas
  • Forsyth, Maria
  • Howlett, Patrick
  • Barlow, Kristine J.
  • Zhu, Haijin
  • Malic, Nino
  • Postma, Almar
OrganizationsLocationPeople

article

Single‐ion conducting polymer as lithium salt additive in polymerized ionic liquid block copolymer electrolyte

  • Goujon, Nicolas
  • Forsyth, Maria
  • Howlett, Patrick
  • Mendes, Tiago
  • Barlow, Kristine J.
Abstract

<jats:title>Abstract</jats:title><jats:p>Herein, we describe the use of single‐ion conducting block copolymer (SIC) as an additional lithium salt additive to a ternary solid polymer electrolyte (SPE), consisting of a poly(styrene‐<jats:italic>b</jats:italic>‐1‐((2‐acryloyloxy)ethyl)‐3‐butylimidazolium bis(trifluoromethanesulfo‐nyl)imide) (S‐ImTFSI<jats:sub>64‐16</jats:sub>) block copolymer, a <jats:italic>N</jats:italic>‐propyl‐<jats:italic>N</jats:italic>‐methylpyrrolidinium bis(fluorosulfonyl)imide (C<jats:sub>3</jats:sub>mpyrFSI) ionic liquid (IL) and a lithium bis(fluorosulfonyl) imide (LiFSI) salt. For this purpose, the S‐ImTFSI<jats:sub>64‐16</jats:sub> was substituted by a SIC, based on poly(styrene‐<jats:italic>b</jats:italic>‐((4‐styrenesulfonyl)(trifluoromethanesulfonyl)imide lithium salt)) (S‐STFSILi<jats:sub>64‐16</jats:sub>), at various molar ratios. The impact of the SIC concentration on the phase behavior and transport properties of the SPEs was investigated by means of differential scanning calorimetry, electrochemical impedance spectroscopy, and diffusion NMR. In addition, the electrochemical performance of the SPEs was assessed in lithium symmetrical cell at 50 and 80°C. Finally, the cycling performance of a selected SPE was also assessed at 80°C in a Li│NMC<jats:sub>111</jats:sub> cell with capacity loading of 1.3 mAh.cm<jats:sup>−2</jats:sup> at a C‐rate of 0.1 C. The Li│NMC<jats:sub>111</jats:sub> full cell was able to deliver a stable capacity of 0.94 mAh.cm<jats:sup>−2</jats:sup> after 20 cycles, corresponding to a capacity of 117 mAh.g<jats:sup>−1</jats:sup>. These results demonstrates that PIL block copolymer—IL—salt composites represent a promising choice of electrolyte for the next generation of solid‐state high energy density lithium metal batteries.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • energy density
  • phase
  • composite
  • differential scanning calorimetry
  • Lithium
  • copolymer
  • Nuclear Magnetic Resonance spectroscopy
  • block copolymer