People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Das, Amit
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Unlocking the Potential of Lignin: Towards a Sustainable Solution for Tire Rubber Compound Reinforcementcitations
- 2022Electrically conductive and piezoresistive polymer nanocomposites using multiwalled carbon nanotubes in a flexible copolyester: Spectroscopic, morphological, mechanical and electrical properties
- 2022Ferric Ions Crosslinked Epoxidized Natural Rubber Filled with Carbon Nanotubes and Conductive Carbon Black Hybrid Fillers
- 2021Treasuring waste lignin as superior reinforcing filler in high cis-polybutadiene rubbercitations
- 2020Friction, abrasion and crack growth behavior of in-situ and ex-situ silica filled rubber compositescitations
- 2020Verfahren zur Herstellung von Lignin-PAN-basierten Polymercompounds und Lignin-PAN-basierte Polymercompounds
- 2019Influence of Zn concentration on interfacial intermetallics during liquid and solid state reaction of hypo and hypereutectic Sn-Zn solder alloyscitations
- 2019The Taste of Waste: The Edge of Eggshell Over Calcium Carbonate in Acrylonitrile Butadiene Rubber
- 2019Devulcanization of Waste Rubber and Generation of Active Sites for Silica Reinforcement
- 2018Improved electromechanical response in acrylic rubber by different carbon-based fillerscitations
- 2018Temperature scanning stress relaxation of an autonomous self-healing elastomer containing non-covalent reversible network junctionscitations
- 2018Further enhancement of mechanical properties of conducting rubber composites based on multiwalled carbon nanotubes and Nitrile Rubber by solvent treatmentcitations
- 2017Strong Strain Sensing Performance of Natural Rubber Nanocompositescitations
- 2017Vegetable fillers for electric stimuli responsive elastomerscitations
- 2017Temperature-Dependent Reinforcement of Hydrophilic Rubber Using Ice Crystals
- 2016Improvement of actuation performance of dielectric elastomers by barium titanate and carbon black fillerscitations
- 2016Evaluation of mechanical and dynamic mechanical properties of multiwalled carbon nanotube-based ethylene–propylene copolymer composites mixed by masterbatch dilutioncitations
- 2015Rubber composites based on silane-treated stöber silica and nitrile rubber: Interaction of treated silica with rubber matrixcitations
Places of action
Organizations | Location | People |
---|
article
Improvement of actuation performance of dielectric elastomers by barium titanate and carbon black fillers
Abstract
Dielectric elastomers are promising materials for actuators resembling human muscle. Among elastomers, acrylic rubbers (ACM) have shown good actuation performance but its use is limited by the high operating voltages required. The present work demonstrates that simultaneous incorporation of nanostructured carbon black and dielectric fillers offers an increase in a dielectric permittivity and a suitable modulus of the elastomers matrix, enabling an improved electro-mechanical actuation performance at low voltages. By the use of reinforcing carbon black and barium titanate in an acrylic elastomer matrix a sixfold increase in the dielectric permittivity was realized. A fine tuning of the actuation stress and, consequently, actuation strain can be done by a judicial selection of the different filler concentrations in the soft rubber matrix. Finally, a synergistic effect of the fillers was observed in the improved actuation performance of the developed materials. This work may pave the way to design dielectric elastomers for actuator fabrication. ; Peer reviewed