People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kirchartz, Thomas
Forschungszentrum Jülich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024High‐Bandgap Perovskites for Efficient Indoor Light Harvestingcitations
- 2023Characterizing the influence of charge extraction layers on the performance of triple‐cation perovskite solar cellscitations
- 2022Tantalum Oxide as an Efficient Alternative Electron Transporting Layer for Perovskite Solar Cellscitations
- 2021Comment on “Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells”citations
- 2021Pathways toward 30% Efficient Single‐Junction Perovskite Solar Cells and the Role of Mobile Ionscitations
- 2021Roadmap on organic-inorganic hybrid perovskite semiconductors and devicescitations
- 2021Pathways toward 30% efficient single-junction perovskite solar cells and the role of mobile ionscitations
- 2020Photoluminescence-based characterization of halide perovskites for photovoltaicscitations
- 2020Femto- to Microsecond Dynamics of Excited Electrons in a Quadruple Cation Perovskitecitations
- 2020Femto- to Microsecond Dynamics of Excited Electrons in a Quadruple Cation Perovskitecitations
- 2020How To Quantify the Efficiency Potential of Neat Perovskite Films: Perovskite Semiconductors with an Implied Efficiency Exceeding 28%citations
- 2019Charge-Carrier Recombination in Halide Perovskitescitations
- 2019Charge-Carrier Recombination in Halide Perovskites.
- 2019The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cellscitations
- 2019Highly Compact TiO<sub>2</sub> Films by Spray Pyrolysis and Application in Perovskite Solar Cellscitations
- 2019Fermi-level pinning in methylammonium lead iodide perovskitescitations
- 2018Spin-coated planar Sb<sub>2</sub>S<sub>3</sub> hybrid solar cells approaching 5% efficiencycitations
- 2016Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversioncitations
- 2016Classification of solar cells according to mechanisms of charge separation and charge collectioncitations
- 2013Influence of crystallinity and energetics on charge separation in polymer–inorganic nanocomposite films for solar cellscitations
Places of action
Organizations | Location | People |
---|
article
High‐Bandgap Perovskites for Efficient Indoor Light Harvesting
Abstract
<jats:p>The use of metal‐halide perovskites in photovoltaic applications has become increasingly attractive due to their low‐temperature manufacturing processes and long charge‐carrier lifetimes. High‐bandgap perovskite solar cells have potential for indoor applications due to their efficient absorption of the spectrum of light‐emitting diodes (LEDs). This study investigates the performance of high‐bandgap perovskite solar cells under a wide range of lighting conditions, including a commercially available white LED lamp with a 5–40 000 lx illuminance range and a standard 1 sun reference. The performance of CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>PbI<jats:sub>3</jats:sub>‐based perovskite solar cells to CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>Pb(I<jats:sub>0.8</jats:sub>,Br<jats:sub>0.2</jats:sub>)<jats:sub>3</jats:sub> solar cells with varying electron transport layers (ETL), including PCBM, PCBM:CMC, and CMC:ICBA fullerene combinations, is compared. Because the spectral response of perovskite solar cells covers the white LED spectrum very well, the major performance difference is related to the open‐circuit voltage and fill factor. The cells with the CH3NH3Pb(I<jats:sub>0.8</jats:sub>,Br<jats:sub>0.2</jats:sub>)<jats:sub>3</jats:sub> absorber layer and the CMC:ICBA ETL demonstrate superior open‐circuit voltage and therefore a high efficiency above 29% at 200–500 lx, typical for indoor lighting.</jats:p>