Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Placke, Tobias

  • Google
  • 9
  • 58
  • 86

Mercedes-Benz (Germany)

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Assessing Key Issues Contributing to the Degradation of NCM‐622 || Cu Cells: Competition Between Transition Metal Dissolution and “Dead Li” Formation10citations
  • 2024Assessing Key Issues Contributing to the Degradation of NCM‐622 || Cu Cells: Competition Between Transition Metal Dissolution and “Dead Li” Formation10citations
  • 2024Probing Prismatic/Basal Surfaces of Carbon Materials upon Graphitization by Gas Adsorption, TPD, and XPS1citations
  • 2023Revealing the Impact of Different Iron-Based Precursors on the ‘Catalytic’ Graphitization for Synthesis of Anode Materials for Lithium Ion Batteries9citations
  • 2023Impact of exposing lithium metal to monocrystalline vertical silicon nanowires for lithium-ion microbatteries10citations
  • 2023Revealing the Impact of Different Iron‐Based Precursors on the ‘Catalytic’ Graphitization for Synthesis of Anode Materials for Lithium Ion Batteries9citations
  • 2023Evaluating a Dual‐Ion Battery with an Antimony‐Carbon Composite Anode2citations
  • 2020Porous Graphene-like Carbon from Fast Catalytic Decomposition of Biomass for Energy Storage Applications35citations
  • 2016Nanostructured ZnFe2O4 as Anode Material for Lithium Ion Batteries: Ionic Liquid-Assisted Synthesis and Performance Evaluation with Special Emphasis on Comparative Metal Dissolutioncitations

Places of action

Chart of shared publication
Demelash, Feleke
2 / 4 shared
Brake, Tobias
2 / 2 shared
Winter, Martin
7 / 25 shared
Adhitama, Egy
3 / 5 shared
Vahnstiege, Marc
2 / 2 shared
Javed, Atif
2 / 4 shared
Wiemers-Meyer, Simon
1 / 2 shared
Arifiadi, Anindityo
1 / 1 shared
Wiemersmeyer, Simon
1 / 1 shared
Arifiadi, Anindityo Nugra
1 / 1 shared
Puech, Pascal
1 / 15 shared
Wakabayashi, Keigo
1 / 1 shared
Gerber, Iann
1 / 2 shared
Serp, Philippe
1 / 20 shared
Blon, Thomas
1 / 6 shared
Yoshii, Takeharu
1 / 3 shared
Vidal, Mathieu
1 / 1 shared
Nishihara, Hirotomo
1 / 5 shared
Cameán, Ignacio
1 / 2 shared
Boudalis, Athanassios
1 / 1 shared
Dehaghani, Maryam
1 / 1 shared
Le Breton, Nolwenn
1 / 2 shared
Barreau, Mathias
1 / 3 shared
Zafeiratos, Spyridon
1 / 9 shared
Gómez Martín, Aurora
2 / 4 shared
Glomb, Pascal
2 / 3 shared
Ramírez-Rico, J.
1 / 8 shared
Frankenstein, Lars
2 / 2 shared
Bremers, Heiko
1 / 2 shared
Bashouti, Muhammad Y.
1 / 3 shared
Peiner, Erwin
1 / 3 shared
Sadhujan, Sumesh
1 / 1 shared
Stan, Marian C.
1 / 2 shared
Bela, Marlena M.
1 / 1 shared
Eldona, Calvin
1 / 1 shared
Refino, Andam Deatama
1 / 1 shared
Harilal, Sherina
1 / 1 shared
Wasisto, Hutomo Suryo
1 / 4 shared
Sumboja, Afriyanti
1 / 1 shared
Ramirez-Rico, Joaquin
1 / 2 shared
Gomezmartin, Aurora
1 / 1 shared
Glushenkov, Alexey
1 / 1 shared
Chen, Ying Ian
1 / 3 shared
Kremer, Felipe
1 / 1 shared
Sultana, Irin
1 / 2 shared
Wrogemann, Jens Matthies
1 / 1 shared
Haneke, Lukas
1 / 2 shared
Ramireddy, Thrinathreddy
1 / 4 shared
Winter, Martín
1 / 1 shared
Ruttert, Mirco
1 / 3 shared
Ramírez Rico, Joaquín
1 / 15 shared
Martínez Fernández, Julián
1 / 10 shared
Jia, Haiping
1 / 1 shared
Kloepsch, Richard
1 / 1 shared
Nowak, Sascha
1 / 1 shared
Evertz, Marco
1 / 1 shared
He, Xin
1 / 3 shared
Li, Jie
1 / 17 shared
Chart of publication period
2024
2023
2020
2016

Co-Authors (by relevance)

  • Demelash, Feleke
  • Brake, Tobias
  • Winter, Martin
  • Adhitama, Egy
  • Vahnstiege, Marc
  • Javed, Atif
  • Wiemers-Meyer, Simon
  • Arifiadi, Anindityo
  • Wiemersmeyer, Simon
  • Arifiadi, Anindityo Nugra
  • Puech, Pascal
  • Wakabayashi, Keigo
  • Gerber, Iann
  • Serp, Philippe
  • Blon, Thomas
  • Yoshii, Takeharu
  • Vidal, Mathieu
  • Nishihara, Hirotomo
  • Cameán, Ignacio
  • Boudalis, Athanassios
  • Dehaghani, Maryam
  • Le Breton, Nolwenn
  • Barreau, Mathias
  • Zafeiratos, Spyridon
  • Gómez Martín, Aurora
  • Glomb, Pascal
  • Ramírez-Rico, J.
  • Frankenstein, Lars
  • Bremers, Heiko
  • Bashouti, Muhammad Y.
  • Peiner, Erwin
  • Sadhujan, Sumesh
  • Stan, Marian C.
  • Bela, Marlena M.
  • Eldona, Calvin
  • Refino, Andam Deatama
  • Harilal, Sherina
  • Wasisto, Hutomo Suryo
  • Sumboja, Afriyanti
  • Ramirez-Rico, Joaquin
  • Gomezmartin, Aurora
  • Glushenkov, Alexey
  • Chen, Ying Ian
  • Kremer, Felipe
  • Sultana, Irin
  • Wrogemann, Jens Matthies
  • Haneke, Lukas
  • Ramireddy, Thrinathreddy
  • Winter, Martín
  • Ruttert, Mirco
  • Ramírez Rico, Joaquín
  • Martínez Fernández, Julián
  • Jia, Haiping
  • Kloepsch, Richard
  • Nowak, Sascha
  • Evertz, Marco
  • He, Xin
  • Li, Jie
OrganizationsLocationPeople

article

Assessing Key Issues Contributing to the Degradation of NCM‐622 || Cu Cells: Competition Between Transition Metal Dissolution and “Dead Li” Formation

  • Wiemersmeyer, Simon
  • Demelash, Feleke
  • Brake, Tobias
  • Winter, Martin
  • Adhitama, Egy
  • Arifiadi, Anindityo Nugra
  • Vahnstiege, Marc
  • Placke, Tobias
  • Javed, Atif
Abstract

<jats:title>Abstract</jats:title><jats:p>Combining LiNi<jats:italic><jats:sub>x</jats:sub></jats:italic>Co<jats:italic><jats:sub>y</jats:sub></jats:italic>Mn<jats:italic><jats:sub>1−x−y</jats:sub></jats:italic>O<jats:sub>2</jats:sub> (NCM) as cathode with bare Cu as anode will potentially lead to next‐generation batteries that are smaller, lighter, and can run for longer periods on a single charge. However, maintaining high performance and a long lifespan of NCM || Cu cells is challenging as it can be affected by various factors from both the cathode and the anode. From the cathode, it is well‐known that transition metal (TM) dissolution accelerates cell degradation. From the anode, one of the main challenges is the formation of high surface area Li deposits which later transform into “inactive Li” or “dead Li”. In this study, a comprehensive assessment regarding these competing factors (i.e., TM deposits and “dead Li”) is discussed. Accelerated TM dissolution is accomplished by introducing TM‐containing additives into the electrolyte. The effects of these competing factors and their degradation mechanism are studied quantitatively and qualitatively through inductively coupled plasma, i.e., optical emission spectroscopy and mass spectrometry. The “dead Li” influence is analyzed quantitatively using gas chromatography. The results demonstrate the obvious deleterious impact of dissolved TM ions on cell performance. At the same time, “dead Li” has also become a notable factor for a sudden capacity drop.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • mass spectrometry
  • gas chromatography
  • spectrometry