Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

De Groot, Frank

  • Google
  • 1
  • 12
  • 10

Utrecht University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Deciphering the Origin of Interface‐Induced High Li and Na Ion Conductivity in Nanocomposite Solid Electrolytes Using X‐Ray Raman Spectroscopy10citations

Places of action

Chart of shared publication
Sahle, Christoph
1 / 3 shared
Sundermann, Martin
1 / 10 shared
Eerden, Ad M. J. Van Der
1 / 1 shared
Ngene, Peter
1 / 18 shared
Gulino, Valerio
1 / 9 shared
Lazemi, Masoud
1 / 6 shared
Gretarsson, Hlynur
1 / 9 shared
Blanchard, Didier
1 / 10 shared
De Kort, Laura
1 / 2 shared
Rodenburg, Henrik
1 / 1 shared
Elnaggar, Hebatalla
1 / 2 shared
Longo, Alessandro
1 / 20 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Sahle, Christoph
  • Sundermann, Martin
  • Eerden, Ad M. J. Van Der
  • Ngene, Peter
  • Gulino, Valerio
  • Lazemi, Masoud
  • Gretarsson, Hlynur
  • Blanchard, Didier
  • De Kort, Laura
  • Rodenburg, Henrik
  • Elnaggar, Hebatalla
  • Longo, Alessandro
OrganizationsLocationPeople

article

Deciphering the Origin of Interface‐Induced High Li and Na Ion Conductivity in Nanocomposite Solid Electrolytes Using X‐Ray Raman Spectroscopy

  • Sahle, Christoph
  • Sundermann, Martin
  • Eerden, Ad M. J. Van Der
  • Ngene, Peter
  • Gulino, Valerio
  • Lazemi, Masoud
  • Gretarsson, Hlynur
  • Blanchard, Didier
  • De Kort, Laura
  • Rodenburg, Henrik
  • Elnaggar, Hebatalla
  • Longo, Alessandro
  • De Groot, Frank
Abstract

<jats:title>Abstract</jats:title><jats:p>Solid‐state electrolytes (SSEs) with high ionic conductivities are crucial for safer and high‐capacity batteries. Interface effects in nanocomposites of SSEs and insulators can lead to profound increases in conductivity. Understanding the composition of the interface is crucial for tuning the conductivity of composite solid electrolytes. Herein, X‐ray Raman Scattering (XRS) spectroscopy is used for the first time to unravel the nature of the interface effects responsible for conductivity enhancements in nanocomposites of complex hydride‐based electrolytes (LiBH<jats:sub>4</jats:sub>, NaBH<jats:sub>4</jats:sub>, and NaNH<jats:sub>2</jats:sub>) and oxides. XRS probe of the Li, Na, and B local environments reveals that the interface consists of highly distorted/defected and structurally distinct phase(s) compared to the original compounds. Interestingly, nanocomposites with higher concentrations of the interface compounds exhibit higher conductivities. Clear differences are observed in the interface composition of SiO<jats:sub>2</jats:sub>‐ and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>‐based nanocomposites, attributed to differences in the reactivity of their surface groups. These results demonstrate that interfacial reactions play a dominant role in conductivity enhancement in composite solid electrolytes. This work showcases the potential of XRS in investigating interface interactions, providing valuable insights into the often complex ion conductor/insulator interfaces, especially for systems containing light elements such as Li, B, and Na present in most SSEs and batteries.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • compound
  • phase
  • Raman spectroscopy
  • X-ray spectroscopy