Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kakavelakis, George

  • Google
  • 4
  • 24
  • 393

Hellenic Mediterranean University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024High‐Performance Perovskite Solar Cells with Zwitterion‐Capped‐ZnO Quantum Dots as Electron Transport Layer and <scp>NH<sub>4</sub></scp>X (X = F, Cl, Br) Assisted Interfacial Engineering9citations
  • 2020Metal Halide Perovskites for High‐Energy Radiation Detection206citations
  • 2019Inorganic and Hybrid Perovskite Based Laser Devices: A Review122citations
  • 2016Plasmonic backscattering effect in high-efficient organic photovoltaic devices56citations

Places of action

Chart of shared publication
Runjhun, Rashmi
1 / 2 shared
Eickemeyer, Felix
1 / 1 shared
Drużyński, Zygmunt
1 / 1 shared
Wolska-Pietkiewicz, Małgorzata
1 / 4 shared
Zakeeruddin, Shaik Mohammed
1 / 4 shared
Grätzel, Michael
1 / 38 shared
Baumeler, Thomas
1 / 3 shared
Mensi, Mounir Driss
1 / 1 shared
Lewiński, Janusz
1 / 11 shared
Škorjanc, Viktor
1 / 2 shared
Krishna, Anurag
1 / 5 shared
Anthopoulos, Thomas D.
1 / 33 shared
Gedda, Murali
1 / 5 shared
Kymakis, Emmanuel
2 / 14 shared
Panagiotopoulos, Apostolis
1 / 1 shared
Petridis, Konstantinos
2 / 5 shared
Maksudov, Temur
1 / 3 shared
Panagiotopoulos, Apostolos
1 / 2 shared
Stylianakis, Minas
1 / 4 shared
Kanaras, Antonios
1 / 6 shared
Heuer-Jungemann, Amelie
1 / 4 shared
Vangelidis, Ioannis
1 / 1 shared
Stratakis, Emmanuel
1 / 15 shared
Lidorikis, Elefterios
1 / 4 shared
Chart of publication period
2024
2020
2019
2016

Co-Authors (by relevance)

  • Runjhun, Rashmi
  • Eickemeyer, Felix
  • Drużyński, Zygmunt
  • Wolska-Pietkiewicz, Małgorzata
  • Zakeeruddin, Shaik Mohammed
  • Grätzel, Michael
  • Baumeler, Thomas
  • Mensi, Mounir Driss
  • Lewiński, Janusz
  • Škorjanc, Viktor
  • Krishna, Anurag
  • Anthopoulos, Thomas D.
  • Gedda, Murali
  • Kymakis, Emmanuel
  • Panagiotopoulos, Apostolis
  • Petridis, Konstantinos
  • Maksudov, Temur
  • Panagiotopoulos, Apostolos
  • Stylianakis, Minas
  • Kanaras, Antonios
  • Heuer-Jungemann, Amelie
  • Vangelidis, Ioannis
  • Stratakis, Emmanuel
  • Lidorikis, Elefterios
OrganizationsLocationPeople

article

Plasmonic backscattering effect in high-efficient organic photovoltaic devices

  • Kakavelakis, George
  • Kymakis, Emmanuel
  • Kanaras, Antonios
  • Heuer-Jungemann, Amelie
  • Vangelidis, Ioannis
  • Stratakis, Emmanuel
  • Lidorikis, Elefterios
Abstract

A universal strategy for efficient light trapping through the incorporation of gold nanorods on the electron transport layer (rear) of organic photovoltaic devices is demonstrated. Utilizing the photons that are transmitted through the active layer of a bulk heterojunction photovoltaic device and would otherwise be lost, a significant enhancement in power conversion efficiency (PCE) of poly[N-9?-heptadecanyl-2,7-carbazole-alt-5,5-(4?,7?-di-2-thienyl-2?,1?,3?-benzothiadiazole)]:phenyl-C71-butyric acid methyl ester (PCDTBT:PC71BM) and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b?]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b] thiophenediyl]] (PTB7):PC71BM by ?13% and ?8%, respectively. PCEs over 8% are reported for devices based on the PTB7:PC71BM blend. A comprehensive optical and electrical characterization of our devices to clarify the influence of gold nanorods on exciton generation, dissociation, charge recombination, and transport inside the thin film devices is performed. By correlating the experimental data with detailed numerical simulations, the near-field and far-field scattering effects are separated of gold nanorods (Au NRs), and confidently attribute part of the performance enhancement to the enhanced absorption caused by backscattering. While, a secondary contribution from the Au NRs that partially protrude inside the active layer and exhibit strong near-fields due to localized surface plasmon resonance effects is also observed but is minor in magnitude. Furthermore, another important contribution to the enhanced performance is electrical in nature and comes from the increased charge collection probability.

Topics
  • impedance spectroscopy
  • surface
  • thin film
  • simulation
  • gold
  • ester
  • power conversion efficiency