People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schell, Karl G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Two‐Photon Polymerization of Nanocomposites for Additive Manufacturing of Transparent Magnesium Aluminate Spinel Ceramicscitations
- 2023Field assisted sintering of Ta–Al$_2$O$_3$ composite materials and investigation of electrical conductivity
- 2022Field assisted sintering of Ta–Al$_2$O$_3$ composite materials and investigation of electrical conductivitycitations
- 2022Field‐Assisted Sintering of Nb–Al$_2$O$_3$ Composite Materials and Investigation of Electrical Conductivitycitations
- 2022Injection Molding of Magnesium Aluminate Spinel Nanocomposites for High‐Throughput Manufacturing of Transparent Ceramicscitations
- 2018Effect of damage by hydroxyl generation on strength of silica fiberscitations
Places of action
Organizations | Location | People |
---|
article
Two‐Photon Polymerization of Nanocomposites for Additive Manufacturing of Transparent Magnesium Aluminate Spinel Ceramics
Abstract
Transparent polycrystalline magnesium aluminate (MAS) spinel ceramics are of great interest for industry and academia due to their excellent optical and mechanical properties. However, shaping of MAS is notoriously challenging especially on the microscale requiring hazardous etching methods. Therefore, a photochemically curable nanocomposite is demonstrated that can be structured using high-resolution two-photon lithography. The printed nanocomposites are converted intro transparent MAS by subsequent debinding, sintering, and hot isostatic pressing. The resulting transparent spinel ceramics exhibit a surface roughness S$_q$ of only 10 nm and can be shaped with minimum feature sizes of down to 13 µm. This technology will be important for the production of microstructured ceramics used for optics, photonics, or photocatalysis.