Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gueskine, V.

  • Google
  • 1
  • 16
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Improved Performance of Organic Thermoelectric Generators Through Interfacial Energetics8citations

Places of action

Chart of shared publication
Petsagkourakis, I.
1 / 1 shared
Pavlopoulou, E.
1 / 2 shared
Strakosas, X.
1 / 1 shared
Tybrandt, K.
1 / 1 shared
Liu, X.
1 / 54 shared
Fahlman, M.
1 / 8 shared
Kim, N.
1 / 6 shared
Riera-Galindo, S.
1 / 2 shared
Hadziioannou, G.
1 / 7 shared
Braun, S.
1 / 12 shared
Fabiano, S.
1 / 9 shared
Berggren, M.
1 / 3 shared
Kroon, R.
1 / 2 shared
Lienemann, S.
1 / 2 shared
Crispin, X.
1 / 5 shared
Ruoko, Tero-Petri
1 / 11 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Petsagkourakis, I.
  • Pavlopoulou, E.
  • Strakosas, X.
  • Tybrandt, K.
  • Liu, X.
  • Fahlman, M.
  • Kim, N.
  • Riera-Galindo, S.
  • Hadziioannou, G.
  • Braun, S.
  • Fabiano, S.
  • Berggren, M.
  • Kroon, R.
  • Lienemann, S.
  • Crispin, X.
  • Ruoko, Tero-Petri
OrganizationsLocationPeople

article

Improved Performance of Organic Thermoelectric Generators Through Interfacial Energetics

  • Petsagkourakis, I.
  • Gueskine, V.
  • Pavlopoulou, E.
  • Strakosas, X.
  • Tybrandt, K.
  • Liu, X.
  • Fahlman, M.
  • Kim, N.
  • Riera-Galindo, S.
  • Hadziioannou, G.
  • Braun, S.
  • Fabiano, S.
  • Berggren, M.
  • Kroon, R.
  • Lienemann, S.
  • Crispin, X.
  • Ruoko, Tero-Petri
Abstract

<p>The interfacial energetics are known to play a crucial role in organic diodes, transistors, and sensors. Designing the metal-organic interface has been a tool to optimize the performance of organic (opto)electronic devices, but this is not reported for organic thermoelectrics. In this work, it is demonstrated that the electrical power of organic thermoelectric generators (OTEGs) is also strongly dependent on the metal-organic interfacial energetics. Without changing the thermoelectric figure of merit (ZT) of polythiophene-based conducting polymers, the generated power of an OTEG can vary by three orders of magnitude simply by tuning the work function of the metal contact to reach above 1000 µW cm<sup>−2</sup>. The effective Seebeck coefficient (S<sub>eff</sub>) of a metal/polymer/metal single leg OTEG includes an interfacial contribution (V<sub>inter</sub>/ΔT) in addition to the intrinsic bulk Seebeck coefficient of the polythiophenes, such that S<sub>eff</sub> = S + V<sub>inter</sub>/ΔT varies from 22.7 µV K<sup>−1</sup> [9.4 µV K<sup>−1</sup>] with Al to 50.5 µV K<sup>−1</sup> [26.3 µV K<sup>−1</sup>] with Pt for poly(3,4-ethylenedioxythiophene):p-toluenesulfonate [poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)]. Spectroscopic techniques are used to reveal a redox interfacial reaction affecting locally the doping level of the polymer at the vicinity of the metal-organic interface and conclude that the energetics at the metal-polymer interface provides a new strategy to enhance the performance of OTEGs.</p>

Topics
  • impedance spectroscopy
  • polymer
  • interfacial