People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zeimpekis, Ioannis
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Large-area synthesis of high electrical performance MoS2 by a commercially scalable atomic layer deposition processcitations
- 2023Expanding the transmission window of visible-MWIR chalcogenide glasses by silicon nitride doping
- 2023Large-area synthesis of high electrical performance MoS 2 by a commercially scalable atomic layer deposition processcitations
- 2023Large-area synthesis of high electrical performance MoS 2 by a commercially scalable atomic layer deposition processcitations
- 2022Room temperature phase transition of W-doped VO 2 by atomic layer deposition on 200 mm Si wafers and flexible substratescitations
- 2022Low energy switching of phase change materials using a 2D thermal boundary layercitations
- 2022Low energy switching of phase change materials using a 2D thermal boundary layercitations
- 2022Room temperature phase transition of W-doped VO2 by atomic layer deposition on 200 mm Si wafers and flexible substratescitations
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Mechanochromic reconfigurable metasurfacescitations
- 2019Mechanochromic reconfigurable metasurfacescitations
- 2019Tuning MoS2 metamaterial with elastic strain
- 2019Tuning MoS 2 metamaterial with elastic strain
- 2019High-throughput physical vapour deposition flexible thermoelectric generatorscitations
- 2018Fabrication of micro-scale fracture specimens for nuclear applications by direct laser writing
- 2017Wafer scale pre-patterned ALD MoS 2 FETs
- 2017Wafer scale spatially selective transfer of 2D materials and heterostructures
- 2017Wafer scale spatially selective transfer of 2D materials and heterostructures
- 2017Structural modification of Ga-La-S glass for a new family of chalcogenidescitations
- 2017Wafer scale pre-patterned ALD MoS2 FETs
- 2017Chemical vapor deposition and Van der Waals epitaxy for wafer-scale emerging 2D transition metal di-chalcogenides
- 2017Tuneable sputtered films by doping for wearable and flexible thermoelectrics
- 2017A lift-off method for wafer scale hetero-structuring of 2D materials
Places of action
Organizations | Location | People |
---|
article
Mechanochromic reconfigurable metasurfaces
Abstract
The change of optical properties that some usually natural compounds or polymeric materials show upon the application of external stress is named mechanochromism. Herein, an artificial nanomechanical metasurface formed by a subwavelength nanowire array made of molybdenum disulfide, molybdenum oxide, and silicon nitride changes color upon mechanical deformation. The aforementioned deformation induces reversible changes in the optical transmission (relative transmission change of 197% at 654 nm), thus demonstrating a giant mechanochromic effect. Moreover, these types of metasurfaces can exist in two nonvolatile states presenting a difference in optical transmission of 45% at 678 nm, when they are forced to bend rapidly. The wide optical tunability that photonic nanomechanical metasurfaces, such as the one presented here, possess by design, can provide a valuable platform for mechanochromic and bistable responses across the visible and near infrared regime and form a new family of smart materials with applications in reconfigurable, multifunctional photonic filters, switches, and stress sensors.