Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Li, Mengmeng

  • Google
  • 6
  • 34
  • 223

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 20233D Printed Polyimide Nanocomposite Aerogels for Electromagnetic Interference Shielding and Thermal Management30citations
  • 20233D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management30citations
  • 2021Polymorphism of a semi-crystalline diketopyrrolopyrrole-terthiophene polymer6citations
  • 2019Monitoring of Thermal Aging of Aluminum Alloy via Nonlinear Propagation of Acoustic Pulses Generated and Detected by Lasers14citations
  • 2019The influence of siloxane side-chains on the photovoltaic performance of a conjugated polymer16citations
  • 2019Impact of polymorphism on the optoelectronic properties of a low-bandgap semiconducting polymer127citations

Places of action

Chart of shared publication
Siqueira, Gilberto
2 / 30 shared
Zhao, Shanyu
2 / 26 shared
Zeng, Zhihui
2 / 6 shared
Sivaraman, Deeptanshu
2 / 5 shared
Li, Lei
2 / 9 shared
Malfait, Wim J.
2 / 31 shared
Bonnin, Anne
2 / 8 shared
Wu, Hui
2 / 4 shared
Nyström, Gustav
2 / 24 shared
Yip, Joshua
2 / 2 shared
Ganobjak, Michal
2 / 5 shared
Saghamanesh, Somayeh
2 / 2 shared
Filimonova, Ekaterina
2 / 4 shared
Wu, Tingting
1 / 4 shared
Wienk, Martijn M.
2 / 41 shared
Leenaers, Pieter J.
2 / 4 shared
Janssen, René A. J.
3 / 151 shared
Li, Junyu
2 / 9 shared
Lomonosov, Alexey
1 / 7 shared
Ni, Chenyin
1 / 1 shared
Shen, Zhonghua
1 / 1 shared
Seo, Hogeon
1 / 1 shared
Jhang, Kyung-Young
1 / 1 shared
Goussev, Vitali
1 / 18 shared
Heintges, Gaël H. L.
2 / 3 shared
Hendriks, Koen H.
1 / 7 shared
Colberts, Fallon J. M.
1 / 4 shared
Pisula, Wojciech
1 / 11 shared
Balawi, Ahmed Hesham
1 / 1 shared
Marszalek, Tomasz
1 / 5 shared
Laquai, Frédéric
1 / 11 shared
Ning, Lu
1 / 1 shared
Meskers, Stefan C. J.
1 / 29 shared
Yi, Yuanping
1 / 2 shared
Chart of publication period
2023
2021
2019

Co-Authors (by relevance)

  • Siqueira, Gilberto
  • Zhao, Shanyu
  • Zeng, Zhihui
  • Sivaraman, Deeptanshu
  • Li, Lei
  • Malfait, Wim J.
  • Bonnin, Anne
  • Wu, Hui
  • Nyström, Gustav
  • Yip, Joshua
  • Ganobjak, Michal
  • Saghamanesh, Somayeh
  • Filimonova, Ekaterina
  • Wu, Tingting
  • Wienk, Martijn M.
  • Leenaers, Pieter J.
  • Janssen, René A. J.
  • Li, Junyu
  • Lomonosov, Alexey
  • Ni, Chenyin
  • Shen, Zhonghua
  • Seo, Hogeon
  • Jhang, Kyung-Young
  • Goussev, Vitali
  • Heintges, Gaël H. L.
  • Hendriks, Koen H.
  • Colberts, Fallon J. M.
  • Pisula, Wojciech
  • Balawi, Ahmed Hesham
  • Marszalek, Tomasz
  • Laquai, Frédéric
  • Ning, Lu
  • Meskers, Stefan C. J.
  • Yi, Yuanping
OrganizationsLocationPeople

article

3D Printed Polyimide Nanocomposite Aerogels for Electromagnetic Interference Shielding and Thermal Management

  • Siqueira, Gilberto
  • Zhao, Shanyu
  • Zeng, Zhihui
  • Sivaraman, Deeptanshu
  • Li, Lei
  • Malfait, Wim J.
  • Bonnin, Anne
  • Wu, Hui
  • Nyström, Gustav
  • Yip, Joshua
  • Ganobjak, Michal
  • Li, Mengmeng
  • Saghamanesh, Somayeh
  • Filimonova, Ekaterina
Abstract

<jats:title>Abstract</jats:title><jats:p>Aerogels were listed among the top ten emerging technologies in chemistry by IUPAC in 2022. Their record‐breaking properties sparked the emergence of a thriving insulation market, but solutions are sought to promote additional applications. A 3D assembly process based on direct ink writing of “aerogel‐in‐aerogel” nanocomposites is presented. The printed polyimide‐silica aerogels are non‐brittle (<jats:italic>E</jats:italic> = 6.7 MPa) with a super‐insulating thermal conductivity (20.3 mW m<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup>) and high thermal stability (<jats:italic>T</jats:italic><jats:sub>5wt%</jats:sub> 447 °C). In addition, they display excellent low‐loss dielectric properties and microwave transmission over all relevant communication bands and can be functionalized for electromagnetic interference (EMI) shielding. The high shape‐fidelity printing, combined with laser‐induced etching of thermally conductive graphene layers, enable precise thermal management for portable electronics or maintain an extreme temperature gradient (−40 to +50°C) across a millimeter‐scale partition.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • etching
  • thermal conductivity