Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Widemann, Maximilian

  • Google
  • 3
  • 14
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024A Small Step for Epitaxy, a Large Step Toward Twist Angle Control in 2D Heterostructures2citations
  • 2023In-situ Transmission Electron Microscopy of Crystal Growth under MOVPE Conditionscitations
  • 2023Kinking of GaP Nanowires Grown in an In Situ (S)TEM Gas Cell Holder4citations

Places of action

Chart of shared publication
Volz, Kerstin
2 / 14 shared
Pasko, Sergej
1 / 4 shared
Glowatzki, Johannes
1 / 2 shared
Krotkus, Simonas
1 / 4 shared
Maßmeyer, Oliver
1 / 3 shared
Ojaghi Dogahe, Badrosadat
1 / 1 shared
Beyer, Andreas
2 / 9 shared
Belz, Jürgen
1 / 3 shared
Bergmann, Max
1 / 2 shared
Günkel, Robin
1 / 2 shared
Krug, David Peter
1 / 1 shared
Gruber, Felix
1 / 1 shared
Ahmed, Shamail
1 / 3 shared
Demuth, Thomas
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Volz, Kerstin
  • Pasko, Sergej
  • Glowatzki, Johannes
  • Krotkus, Simonas
  • Maßmeyer, Oliver
  • Ojaghi Dogahe, Badrosadat
  • Beyer, Andreas
  • Belz, Jürgen
  • Bergmann, Max
  • Günkel, Robin
  • Krug, David Peter
  • Gruber, Felix
  • Ahmed, Shamail
  • Demuth, Thomas
OrganizationsLocationPeople

article

Kinking of GaP Nanowires Grown in an In Situ (S)TEM Gas Cell Holder

  • Volz, Kerstin
  • Widemann, Maximilian
  • Krug, David Peter
  • Beyer, Andreas
  • Gruber, Felix
  • Ahmed, Shamail
  • Demuth, Thomas
Abstract

<jats:title>Abstract</jats:title><jats:p>Nanowires are a promising structure to create new defect‐free heterostructures and optoelectronic devices. GaP nanowires grown via the VLS mechanism using tertiary‐butyl phosphine (TBP) and trimethylgallium (TMGa) as precursors in an in situ closed gas cell heating holder are shown. This holder is a model system to investigate the processes in metal‐organic vapour phase epitaxy (MOVPE). GaP nanowires change their growth direction after random distances by producing kinks. Statistics of these kink angles show dominant values of around 70.5°, 109.5°, and 123.7°. A custom holder tip capable of holding a single heating chip is used to perform scanning precession electron diffraction (SPED) measurements on the nanowire kinks. The results show that the predominant kink angles result from micro twins of first and second order. Understanding the defect formation and resulting geometry changes in GaP nanowires can lead to increased control over their shape during growth and mark a huge step toward applicable nanowire devices.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • electron diffraction
  • transmission electron microscopy
  • defect
  • random