Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schmidt, Franzphilipp

  • Google
  • 1
  • 13
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Complexions at the Electrolyte/Electrode Interface in Solid Oxide Cells11citations

Places of action

Chart of shared publication
Scheurer, Christoph
1 / 3 shared
Girgsdies, Frank
1 / 5 shared
Reuter, Karsten
1 / 9 shared
Götsch, Thomas
1 / 6 shared
Schlögl, Robert
1 / 12 shared
Hammud, Adnan
1 / 6 shared
Haart, L. G. J. De
1 / 3 shared
Lunkenbein, Thomas
1 / 13 shared
Ivanov, Danail
1 / 4 shared
Vinke, Izaak C.
1 / 1 shared
Eichel, Rüdigera.
1 / 2 shared
Türk, Hanna
1 / 1 shared
Knopgericke, Axel
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Scheurer, Christoph
  • Girgsdies, Frank
  • Reuter, Karsten
  • Götsch, Thomas
  • Schlögl, Robert
  • Hammud, Adnan
  • Haart, L. G. J. De
  • Lunkenbein, Thomas
  • Ivanov, Danail
  • Vinke, Izaak C.
  • Eichel, Rüdigera.
  • Türk, Hanna
  • Knopgericke, Axel
OrganizationsLocationPeople

article

Complexions at the Electrolyte/Electrode Interface in Solid Oxide Cells

  • Scheurer, Christoph
  • Girgsdies, Frank
  • Reuter, Karsten
  • Götsch, Thomas
  • Schlögl, Robert
  • Hammud, Adnan
  • Haart, L. G. J. De
  • Lunkenbein, Thomas
  • Ivanov, Danail
  • Schmidt, Franzphilipp
  • Vinke, Izaak C.
  • Eichel, Rüdigera.
  • Türk, Hanna
  • Knopgericke, Axel
Abstract

<jats:title>Abstract</jats:title><jats:p>Rapid deactivation presently limits a wide spread use of high‐temperature solid oxide cells (SOCs) as otherwise highly efficient chemical energy converters. With deactivation triggered by the ongoing conversion reactions, an atomic‐scale understanding of the active triple‐phase boundary between electrolyte, electrode, and gas phase is essential to increase cell performance. Here, a multi‐method approach is used comprising transmission electron microscopy and first‐principles calculations and molecular simulations to untangle the atomic arrangement of the prototypical SOC interface between a lanthanum strontium manganite (LSM) anode and a yttria‐stabilized zirconia (YSZ) electrolyte in the as‐prepared state after sintering. An interlayer of self‐limited width with partial amorphization and strong compositional gradient is identified, thus exhibiting the characteristics of a complexion that is stabilized by the confinement between two bulk phases. This offers a new perspective to understand the function of SOCs at the atomic scale. Moreover, it opens up a hitherto unrealized design space to tune the conversion efficiency.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • Strontium
  • transmission electron microscopy
  • Lanthanum
  • gas phase
  • sintering
  • phase boundary