People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Edoff, Marika
Uppsala University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiencycitations
- 2023Silver Alloying in Highly Efficient CuGaSe 2 Solar Cells with Different Buffer Layerscitations
- 2023Cu(In,Ga)Se2 based ultrathin solar cells the pathway from lab rigid to large scale flexible technologycitations
- 2023Low energy muon study of the p-n interface in chalcopyrite solar cells
- 2023Silver Alloying in Highly Efficient CuGaSe2 Solar Cells with Different Buffer Layerscitations
- 2021Thermodynamic stability, phase separation and Ag grading in (Ag,Cu)(In,Ga)Se2 solar absorberscitations
- 2021Alkali Dispersion in (Ag,Cu)(In,Ga)Se-2 Thin Film Solar Cells-Insight from Theory and Experimentcitations
- 2021Alkali dispersion in (Ag,Cu)(In,Ga)Se2 thin film solar cells – Insight from theory and experimentcitations
- 2021High-Performance and Industrially Viable Nanostructured SiOx Layers for Interface Passivation in Thin Film Solar Cellscitations
- 2020Amorphous tin-gallium oxide buffer layers in (Ag,Cu)(In,Ga)Se2 solar cellscitations
- 2020Thermodynamic stability, phase separation and Ag grading in (Ag,Cu)(In,Ga)Se-2 solar absorberscitations
- 2020Comparison of Sulfur Incorporation into CuInSe(2)and CuGaSe(2)Thin-Film Solar Absorberscitations
- 2019Rear Optical Reflection and Passivation Using a Nanopatterned Metal/Dielectric Structure in Thin-Film Solar Cellscitations
- 2019Atomic layer deposition of amorphous tin-gallium oxide filmscitations
- 2019Modelling Supported Design of Light Management Structures in Ultra-Thin Cigs Photovoltaic Devicescitations
- 2018Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layercitations
- 2018Insulator Materials for Interface Passivation of Cu(In,Ga)Se-2 Thin Filmscitations
- 2017CdS and Zn1−xSnxOy buffer layers for CIGS solar cells
- 2017Cd and Cu Interdiffusion in Cu(In, Ga)Se2/CdS Hetero-Interfaces
- 2017ALD of phase controlled tin monosulfide thin films
- 2015Investigating the electronic properties of Al2O3/Cu(In, Ga)Se-2 interfacecitations
- 2014Potential-induced optimization of ultra-thin rear surface passivated CIGS solar cellscitations
- 2014Optimizing Ga-profiles for highly efficient Cu(In,Ga)Se2 thin film solar cells in simple and complex defect modelscitations
- 2013Development of Rear Surface Passivated Cu(In,Ga)Se2 Thin Film Solar Cells with Nano-Sized Local Rear Point Contactscitations
- 2013Surface engineering in Cu(In,Ga)Se2 solar cellscitations
- 2011Effect of gallium grading in Cu(In,Ga)Se2 solar-cell absorbers produced by multi-stage coevaporationcitations
Places of action
Organizations | Location | People |
---|
article
Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer
Abstract
<p>Thin film solar cells based in Cu(In,Ga)Se<sub>2</sub> (CIGS) are among the most efficient polycrystalline solar cells, surpassing CdTe and even polycrystalline silicon solar cells. For further developments, the CIGS technology has to start incorporating different solar cell architectures and strategies that allow for very low interface recombination. In this work, ultrathin 350 nm CIGS solar cells with a rear interface passivation strategy are studied and characterized. The rear passivation is achieved using an Al<sub>2</sub>O<sub>3</sub> nanopatterned point structure. Using the cell results, photoluminescence measurements, and detailed optical simulations based on the experimental results, it is shown that by including the nanopatterned point contact structure, the interface defect concentration lowers, which ultimately leads to an increase of solar cell electrical performance mostly by increase of the open circuit voltage. Gains to the short circuit current are distributed between an increased rear optical reflection and also due to electrical effects. The approach of mixing several techniques allows us to make a discussion considering the different passivation gains, which has not been done in detail in previous works. A solar cell with a nanopatterned rear contact and a 350 nm thick CIGS absorber provides an average power conversion efficiency close to 10%.</p>