Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sayyad, Mohammed

  • Google
  • 2
  • 13
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024The Defects Genome of Janus Transition Metal Dichalcogenides7citations
  • 2023Improvements in 2D p-type WSe2 transistors towards ultimate CMOS scaling32citations

Places of action

Chart of shared publication
Taniguchi, Takashi
1 / 58 shared
Hautier, Geoffroy
1 / 20 shared
Kudrawiec, Robert
1 / 8 shared
Gilardoni, Carmem M.
1 / 3 shared
Watanabe, Kenji
1 / 49 shared
Atatüre, Mete
1 / 5 shared
Kopaczek, Jan
1 / 1 shared
Yang, Shize
1 / 1 shared
Chen, Weiru
1 / 1 shared
Xiong, Yihuang
1 / 1 shared
Mamun, Fahad Al
1 / 1 shared
Xie, Jing
1 / 1 shared
Patoary, Naim Hossain
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Taniguchi, Takashi
  • Hautier, Geoffroy
  • Kudrawiec, Robert
  • Gilardoni, Carmem M.
  • Watanabe, Kenji
  • Atatüre, Mete
  • Kopaczek, Jan
  • Yang, Shize
  • Chen, Weiru
  • Xiong, Yihuang
  • Mamun, Fahad Al
  • Xie, Jing
  • Patoary, Naim Hossain
OrganizationsLocationPeople

article

The Defects Genome of Janus Transition Metal Dichalcogenides

  • Taniguchi, Takashi
  • Hautier, Geoffroy
  • Kudrawiec, Robert
  • Gilardoni, Carmem M.
  • Watanabe, Kenji
  • Atatüre, Mete
  • Kopaczek, Jan
  • Sayyad, Mohammed
  • Yang, Shize
  • Chen, Weiru
  • Xiong, Yihuang
Abstract

<jats:title>Abstract</jats:title><jats:p>Two‐dimensional (2D) Janus Transition Metal Dichalcogenides (TMDs) have attracted much interest due to their exciting quantum properties arising from their unique two‐faced structure, broken‐mirror symmetry, and consequent colossal polarisation field within the monolayer. While efforts have been made to achieve high‐quality Janus monolayers, the existing methods rely on highly energetic processes that introduce unwanted grain‐boundary and point defects with still unexplored effects on the material's structural and excitonic properties Through High‐resolution scanning transmission electron microscopy (HRSTEM), density functional theory (DFT), and optical spectroscopy measurements; this work introduces the most encountered and energetically stable point defects. It establishes their impact on the material's optical properties. HRSTEM studies show that the most energetically stable point defects are single (<jats:italic>V<jats:sub>S</jats:sub></jats:italic> and <jats:italic>V<jats:sub>Se</jats:sub></jats:italic>) and double chalcogen vacancy (<jats:italic>V<jats:sub>S</jats:sub></jats:italic> −<jats:italic>V<jats:sub>Se</jats:sub></jats:italic>), interstitial defects (M<jats:sub>i</jats:sub>), and metal impurities (M<jats:sub>W</jats:sub>) and establish their structural characteristics. DFT further establishes their formation energies and related localized bands within the forbidden band. Cryogenic excitonic studies on h‐BN‐encapsulated Janus monolayers offer a clear correlation between these structural defects and observed emission features, which closely align with the results of the theory. The overall results introduce the defect genome of Janus TMDs as an essential guideline for assessing their structural quality and device properties.</jats:p><jats:p>This article is protected by copyright. All rights reserved</jats:p>

Topics
  • density
  • impedance spectroscopy
  • grain
  • theory
  • transmission electron microscopy
  • density functional theory
  • interstitial
  • vacancy
  • point defect