Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wu, Luyan

  • Google
  • 8
  • 34
  • 208

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023Stabilization of Inorganic Perovskite Solar Cells with a 2D Dion–Jacobson Passivating Layer38citations
  • 2023Stabilisation of Inorganic Perovskite Solar Cells with A 2d Dion-Jacobson Passivating Layer38citations
  • 2023Stabilisation of Inorganic Perovskite Solar Cells with A 2d Dion-Jacobson Passivating Layer38citations
  • 2023Exciton dissociation in 2D layered metal-halide perovskites42citations
  • 2022White light emission with unity efficiency from Cs 2 Na 1−x Ag x In 1−y Bi y Cl 6 double perovskites:the role of bismuth and silver11citations
  • 2022Direct measurement of radiative decay rates in metal halide perovskites†15citations
  • 2022White light emission with unity efficiency from Cs2Na1−xAgxIn1−yBiyCl6 double perovskites11citations
  • 2022Direct measurement of radiative decay rates in metal halide perovskites15citations

Places of action

Chart of shared publication
Janasik, Patryk
3 / 4 shared
Li, Guixiang
3 / 4 shared
Köbler, Hans
2 / 14 shared
Prashanthan, Karunanantharajah
3 / 5 shared
Zhang, Hao
3 / 24 shared
Marongiu, Daniela
8 / 27 shared
Li, Jinzhao
3 / 9 shared
Li, Meng
3 / 14 shared
Gries, Thomas W.
3 / 4 shared
Saba, Michele
8 / 39 shared
Musiienko, Artem
3 / 8 shared
Sun, Tianxiao
3 / 3 shared
Abate, Antonio
3 / 57 shared
Paramasivam, Gopinath
3 / 9 shared
Appiah, Augustine Nana Sekyi
1 / 4 shared
Appiah, Augustine N. S.
2 / 2 shared
Kobler, Hans
1 / 2 shared
Mura, Andrea
5 / 26 shared
Liu, Fang
5 / 20 shared
Bongiovanni, Giovanni
5 / 23 shared
Pitzalis, Federico
3 / 6 shared
Lai, Stefano
5 / 8 shared
Pau, Riccardo
5 / 11 shared
Simbula, Angelica
5 / 13 shared
Quochi, Francesco
5 / 29 shared
Matta, Selene
3 / 4 shared
Wang, Qingqian
2 / 5 shared
Geddo Lehmann, Alessandra
1 / 5 shared
Filippetti, Alessio
4 / 12 shared
Wang, Kai
2 / 12 shared
Loi, Maria Antonietta
1 / 73 shared
Geddo-Lehmann, Alessandra
2 / 2 shared
Lehmann, Alessandra Geddo
1 / 2 shared
Loi, Maria A.
1 / 32 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Janasik, Patryk
  • Li, Guixiang
  • Köbler, Hans
  • Prashanthan, Karunanantharajah
  • Zhang, Hao
  • Marongiu, Daniela
  • Li, Jinzhao
  • Li, Meng
  • Gries, Thomas W.
  • Saba, Michele
  • Musiienko, Artem
  • Sun, Tianxiao
  • Abate, Antonio
  • Paramasivam, Gopinath
  • Appiah, Augustine Nana Sekyi
  • Appiah, Augustine N. S.
  • Kobler, Hans
  • Mura, Andrea
  • Liu, Fang
  • Bongiovanni, Giovanni
  • Pitzalis, Federico
  • Lai, Stefano
  • Pau, Riccardo
  • Simbula, Angelica
  • Quochi, Francesco
  • Matta, Selene
  • Wang, Qingqian
  • Geddo Lehmann, Alessandra
  • Filippetti, Alessio
  • Wang, Kai
  • Loi, Maria Antonietta
  • Geddo-Lehmann, Alessandra
  • Lehmann, Alessandra Geddo
  • Loi, Maria A.
OrganizationsLocationPeople

article

Stabilization of Inorganic Perovskite Solar Cells with a 2D Dion–Jacobson Passivating Layer

  • Janasik, Patryk
  • Wu, Luyan
  • Li, Guixiang
  • Köbler, Hans
  • Prashanthan, Karunanantharajah
  • Zhang, Hao
  • Marongiu, Daniela
  • Li, Jinzhao
  • Li, Meng
  • Gries, Thomas W.
  • Saba, Michele
  • Musiienko, Artem
  • Sun, Tianxiao
  • Abate, Antonio
  • Paramasivam, Gopinath
  • Appiah, Augustine Nana Sekyi
Abstract

<jats:title>Abstract</jats:title><jats:p>Inorganic metal halide perovskites such as CsPbI<jats:sub>3</jats:sub> are promising for high‐performance, reproducible, and robust solar cells. However, inorganic perovskites are sensitive to humidity, which causes the transformation from the black phase to the yellow δ, non‐perovskite phase. Such phase instability has been a significant challenge to long‐term operational stability. Here, a surface dimensionality reduction strategy is reported, using 2‐(4‐aminophenyl)ethylamine cation to construct a Dion–Jacobson 2D phase that covers the surface of the 3D inorganic perovskite structure. The Dion–Jacobson layer mainly grows at the grain boundaries of the perovskite, effectively passivating surface defects and providing favourable interfacial charge transfer. The resulting inorganic perovskite films exhibit excellent humidity resistance when submerged in an aqueous solution (isopropanol:water = 4:1 v/v) and exposed to a 50% humidity air atmosphere. The Dion–Jacobson 2D/3D inorganic perovskite solar cell (PSC) achieves a power conversion efficiency (PCE) of 19.5% with a <jats:italic>V</jats:italic><jats:sub>oc</jats:sub> of 1.197 eV. It retains 83% of its initial PCE after 1260 h of maximum power point tracking under 1.2 sun illumination. The work demonstrates an effective way for stabilizing efficient inorganic perovskite solar cells.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • surface
  • grain
  • phase
  • defect
  • power conversion efficiency