Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Feng, Kui

  • Google
  • 1
  • 11
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Mixing Insulating Commodity Polymers with Semiconducting n‐type Polymers Enables High‐Performance Electrochemical Transistors8citations

Places of action

Chart of shared publication
Avila Ramirez, Alan Eduardo
1 / 2 shared
Ose, Helēna
1 / 1 shared
Hamedi, Mahiar Max
1 / 2 shared
Mawad, Damia
1 / 1 shared
Yue, Wan
1 / 4 shared
Jain, Saumey
1 / 1 shared
Guo, Xugang
1 / 2 shared
Mozolevskis, Gatis
1 / 2 shared
Herland, Anna
1 / 4 shared
Zeglio, Erica
1 / 1 shared
Lin, Yunfan
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Avila Ramirez, Alan Eduardo
  • Ose, Helēna
  • Hamedi, Mahiar Max
  • Mawad, Damia
  • Yue, Wan
  • Jain, Saumey
  • Guo, Xugang
  • Mozolevskis, Gatis
  • Herland, Anna
  • Zeglio, Erica
  • Lin, Yunfan
OrganizationsLocationPeople

article

Mixing Insulating Commodity Polymers with Semiconducting n‐type Polymers Enables High‐Performance Electrochemical Transistors

  • Avila Ramirez, Alan Eduardo
  • Ose, Helēna
  • Hamedi, Mahiar Max
  • Mawad, Damia
  • Yue, Wan
  • Feng, Kui
  • Jain, Saumey
  • Guo, Xugang
  • Mozolevskis, Gatis
  • Herland, Anna
  • Zeglio, Erica
  • Lin, Yunfan
Abstract

<jats:title>Abstract</jats:title><jats:p>Diluting organic semiconductors with a host insulating polymer is used to increase the electronic mobility in organic electronic devices, such as thin film transistors, while considerably reducing material costs. In contrast to organic electronics, bioelectronic devices such as the organic electrochemical transistor (OECT) rely on both electronic and ionic mobility for efficient operation, making it challenging to integrate hydrophobic polymers as the predominant blend component. This work shows that diluting the n‐type conjugated polymer p(N‐T) with high molecular weight polystyrene (10 KDa) leads to OECTs with over three times better mobility‐volumetric capacitance product (µC*) with respect to the pristine p(N‐T) (from 4.3 to 13.4 F V<jats:sup>−1</jats:sup> cm<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup>) while drastically decreasing the amount of conjugated polymer (six times less). This improvement in µC* is due to a dramatic increase in electronic mobility by two orders of magnitude, from 0.059 to 1.3 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> for p(N‐T):Polystyrene 10 KDa 1:6. Moreover, devices made with this polymer blend show better stability, retaining 77% of the initial drain current after 60 minutes operation in contrast to 12% for pristine p(N‐T). These results open a new generation of low‐cost organic mixed ionic‐electronic conductors where the bulk of the film is made by a commodity polymer.</jats:p>

Topics
  • impedance spectroscopy
  • mobility
  • thin film
  • semiconductor
  • laser emission spectroscopy
  • molecular weight
  • polymer blend