Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Silva, Ingrid

  • Google
  • 2
  • 19
  • 60

Max Planck Institute of Colloids and Interfaces

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Cooperative Copper Single Atom Catalyst in Two‐dimensional Carbon Nitride for Enhanced CO<sub>2</sub> Electrolysis to Methane51citations
  • 2023Nanoengineered Au–carbon nitride interfaces enhance photocatalytic pure water splitting to hydrogen9citations

Places of action

Chart of shared publication
Singh, Chandra Veer
1 / 7 shared
Ajayan, Pulickel
1 / 9 shared
Teixeira, Ivo F.
1 / 2 shared
Kumar, Pawan
2 / 17 shared
Mata, Astrid Campos
1 / 1 shared
Gao, Guanhui
1 / 7 shared
Sarma, Saurav Ch.
1 / 5 shared
Chen, Zhiwen
1 / 1 shared
Tarakina, Nadezda V.
1 / 3 shared
Roy, Soumyabrata
2 / 12 shared
Li, Zhengyuan
1 / 1 shared
Wu, Jingjie
1 / 1 shared
Kibria, Md. Golam
1 / 2 shared
Stumpf, Humberto
1 / 1 shared
Campos-Mata, Astrid
1 / 1 shared
Chen, Zhi Wen
1 / 1 shared
Teixeira, Ivo
1 / 1 shared
Ajayan, Pulickel M.
1 / 29 shared
Ladeira, Luiz O.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Singh, Chandra Veer
  • Ajayan, Pulickel
  • Teixeira, Ivo F.
  • Kumar, Pawan
  • Mata, Astrid Campos
  • Gao, Guanhui
  • Sarma, Saurav Ch.
  • Chen, Zhiwen
  • Tarakina, Nadezda V.
  • Roy, Soumyabrata
  • Li, Zhengyuan
  • Wu, Jingjie
  • Kibria, Md. Golam
  • Stumpf, Humberto
  • Campos-Mata, Astrid
  • Chen, Zhi Wen
  • Teixeira, Ivo
  • Ajayan, Pulickel M.
  • Ladeira, Luiz O.
OrganizationsLocationPeople

article

Cooperative Copper Single Atom Catalyst in Two‐dimensional Carbon Nitride for Enhanced CO<sub>2</sub> Electrolysis to Methane

  • Singh, Chandra Veer
  • Ajayan, Pulickel
  • Teixeira, Ivo F.
  • Kumar, Pawan
  • Mata, Astrid Campos
  • Gao, Guanhui
  • Silva, Ingrid
  • Sarma, Saurav Ch.
  • Chen, Zhiwen
  • Tarakina, Nadezda V.
  • Roy, Soumyabrata
  • Li, Zhengyuan
  • Wu, Jingjie
  • Kibria, Md. Golam
Abstract

<jats:title>Abstract</jats:title><jats:p>Renewable electricity powered carbon dioxide (CO<jats:sub>2</jats:sub>) reduction (eCO<jats:sub>2</jats:sub>R) to high‐value fuels like methane (CH<jats:sub>4</jats:sub>) holds the potential to close the carbon cycle at meaningful scales. However, this kinetically staggered 8‐electron multistep reduction still suffers from inadequate catalytic efficiency and current density. Atomic Cu‐structures can boost eCO<jats:sub>2</jats:sub>R‐to‐CH<jats:sub>4</jats:sub> selectivity due to enhanced intermediate binding energies (BEs) resulting from favorably shifted d‐band centers. Herein, we exploit two‐dimensional carbon nitride (CN) matrices, viz. Na‐polyheptazine (PHI) and Li‐polytriazine imides (PTI), to host Cu‐N<jats:sub>2</jats:sub> type single atom sites with high density (∼1.5 at%), via a facile metal ion exchange process. Optimized Cu loading in nanocrystalline Cu‐PTI maximizes eCO<jats:sub>2</jats:sub>R‐to‐CH<jats:sub>4</jats:sub> performance with Faradaic efficiency (FE<jats:sub>CH4</jats:sub>) of ≈68% and a high partial current density of 348 mA cm<jats:sup>−2</jats:sup> at a low potential of ‐0.84 V versus RHE, surpassing the state‐of‐the‐art catalysts. Multi‐Cu substituted N‐appended nanopores in the CN frameworks yield thermodynamically stable quasi‐dual/triple sites with large interatomic distances dictated by the pore dimensions. First‐principles calculations elucidate the relative Cu‐CN cooperative effects between the two matrices and how the Cu‐Cu distance and local environment dictate the adsorbate BEs, density of states, and CO<jats:sub>2</jats:sub>‐to‐CH<jats:sub>4</jats:sub> energy profile landscape. The 9N pores in Cu‐PTI yield cooperative Cu‐Cu sites that synergistically enhance the kinetics of the rate‐limiting steps in the eCO<jats:sub>2</jats:sub>R‐to‐CH<jats:sub>4</jats:sub> pathway.</jats:p><jats:p>This article is protected by copyright. All rights reserved</jats:p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • Carbon
  • nitride
  • copper
  • current density