Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Qiu, Xinkai

  • Google
  • 9
  • 65
  • 713

University of Cambridge

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Enhancing the conductivity and thermoelectric performance of semicrystalline conducting polymers through controlled tie chain incorporation6citations
  • 2024Enhancing the Conductivity and Thermoelectric Performance of Semicrystalline Conducting Polymers through Controlled Tie Chain Incorporation.citations
  • 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectrics123citations
  • 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectrics123citations
  • 2020N-type organic thermoelectrics:demonstration of ZT > 0.3153citations
  • 2020N-type organic thermoelectrics153citations
  • 20191,8-diiodooctane acts as a photo-acid in organic solar cells69citations
  • 20191,8-diiodooctane acts as a photo-acid in organic solar cells69citations
  • 2018Soft Nondamaging Contacts Formed from Eutectic Ga-In for the Accurate Determination of Dielectric Constants of Organic Materials17citations

Places of action

Chart of shared publication
Jacobs, Ie
1 / 3 shared
Wood, William
2 / 5 shared
Ren, Xinglong
2 / 6 shared
Midgley, Paul, A.
1 / 2 shared
He, Qiao
2 / 5 shared
Mcneill, Cr
1 / 7 shared
Zhu, Wenjin
2 / 4 shared
Wang, Zichen
2 / 3 shared
Vacek, Petr
2 / 7 shared
Sirringhaus, Henning
2 / 48 shared
Martin, Jaime
2 / 13 shared
Un, Hioleng
1 / 1 shared
Freychet, Guillaume
2 / 8 shared
Zhang, Youcheng
2 / 8 shared
Xiao, Mingfei
2 / 7 shared
Laulainen, Joonatan, E. M.
1 / 1 shared
Qu, Zhengkang
2 / 2 shared
Tjhe, Dion
2 / 4 shared
Heeney, Martin
2 / 14 shared
Asatryan, Jesika
2 / 6 shared
Jacobs, Ian E.
1 / 5 shared
Midgley, Paul A.
1 / 27 shared
Un, Hio-Leng
1 / 1 shared
Laulainen, Joonatan Em
1 / 3 shared
Mcneill, Christopher R.
1 / 15 shared
Baran, Derya
4 / 11 shared
Villalva, Diego Rosas
2 / 2 shared
Chiechi, Ryan C.
3 / 13 shared
Sami, Selim
2 / 4 shared
Havenith, Remco W. A.
4 / 22 shared
Dong, Jingjin
4 / 15 shared
Nugraha, Mohamad Insan
2 / 6 shared
Sun, Hengda
2 / 8 shared
Koster, L. Jan Anton
2 / 23 shared
Koopmans, Marten
2 / 8 shared
Yao, Chen
2 / 2 shared
Yang, Xuwen
2 / 2 shared
Anthopoulos, Thomas D.
4 / 33 shared
Potgieser, Hinderikus G. O.
2 / 2 shared
Portale, Giuseppe
2 / 33 shared
Liu, Jian
4 / 26 shared
Ye, Gang
2 / 6 shared
Fabiano, Simone
2 / 34 shared
Koster, Lja
3 / 32 shared
Portale, Giuseppe, A.
2 / 57 shared
Alessandri, Riccardo
1 / 3 shared
Marrink, Siewert J.
1 / 4 shared
Rousseva, Sylvia
2 / 7 shared
Qiu, Li
2 / 6 shared
Hummelen, Jan C.
2 / 18 shared
Nugraha, Mohamad I.
2 / 3 shared
Klasen, Nathalie
2 / 2 shared
Caironi, Mario
2 / 15 shared
Barker, Alex J.
2 / 7 shared
Marrink, Siewert
1 / 3 shared
Hummelen, Jan
1 / 10 shared
Zee, Bas Van Der
1 / 2 shared
Minnaard, Adriaan
2 / 2 shared
Wang, Gongbao
2 / 4 shared
Koster, Lambert
1 / 2 shared
Doumon, Nutifafa Y.
1 / 3 shared
Chiechi, Ryan
1 / 3 shared
Kooistra, Floris B.
1 / 4 shared
Douvogianni, Evgenia
1 / 4 shared
Jahani, Fatemeh
1 / 5 shared
Chart of publication period
2024
2021
2020
2019
2018

Co-Authors (by relevance)

  • Jacobs, Ie
  • Wood, William
  • Ren, Xinglong
  • Midgley, Paul, A.
  • He, Qiao
  • Mcneill, Cr
  • Zhu, Wenjin
  • Wang, Zichen
  • Vacek, Petr
  • Sirringhaus, Henning
  • Martin, Jaime
  • Un, Hioleng
  • Freychet, Guillaume
  • Zhang, Youcheng
  • Xiao, Mingfei
  • Laulainen, Joonatan, E. M.
  • Qu, Zhengkang
  • Tjhe, Dion
  • Heeney, Martin
  • Asatryan, Jesika
  • Jacobs, Ian E.
  • Midgley, Paul A.
  • Un, Hio-Leng
  • Laulainen, Joonatan Em
  • Mcneill, Christopher R.
  • Baran, Derya
  • Villalva, Diego Rosas
  • Chiechi, Ryan C.
  • Sami, Selim
  • Havenith, Remco W. A.
  • Dong, Jingjin
  • Nugraha, Mohamad Insan
  • Sun, Hengda
  • Koster, L. Jan Anton
  • Koopmans, Marten
  • Yao, Chen
  • Yang, Xuwen
  • Anthopoulos, Thomas D.
  • Potgieser, Hinderikus G. O.
  • Portale, Giuseppe
  • Liu, Jian
  • Ye, Gang
  • Fabiano, Simone
  • Koster, Lja
  • Portale, Giuseppe, A.
  • Alessandri, Riccardo
  • Marrink, Siewert J.
  • Rousseva, Sylvia
  • Qiu, Li
  • Hummelen, Jan C.
  • Nugraha, Mohamad I.
  • Klasen, Nathalie
  • Caironi, Mario
  • Barker, Alex J.
  • Marrink, Siewert
  • Hummelen, Jan
  • Zee, Bas Van Der
  • Minnaard, Adriaan
  • Wang, Gongbao
  • Koster, Lambert
  • Doumon, Nutifafa Y.
  • Chiechi, Ryan
  • Kooistra, Floris B.
  • Douvogianni, Evgenia
  • Jahani, Fatemeh
OrganizationsLocationPeople

article

Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectrics

  • Baran, Derya
  • Villalva, Diego Rosas
  • Havenith, Remco W. A.
  • Dong, Jingjin
  • Qiu, Xinkai
  • Nugraha, Mohamad Insan
  • Koster, Lja
  • Sun, Hengda
  • Portale, Giuseppe, A.
  • Koopmans, Marten
  • Yao, Chen
  • Yang, Xuwen
  • Anthopoulos, Thomas D.
  • Potgieser, Hinderikus G. O.
  • Liu, Jian
  • Ye, Gang
  • Fabiano, Simone
Abstract

<p>There is no molecular strategy for selectively increasing the Seebeck coefficient without reducing the electrical conductivity for organic thermoelectrics. Here, it is reported that the use of amphipathic side chains in an n-type donor–acceptor copolymer can selectively increase the Seebeck coefficient and thus increase the power factor by a factor of ≈5. The amphipathic side chain contains an alkyl chain segment as a spacer between the polymer backbone and an ethylene glycol type chain segment. The use of this alkyl spacer does not only reduce the energetic disorder in the conjugated polymer film but can also properly control the dopant sites away from the backbone, which minimizes the adverse influence of counterions. As confirmed by kinetic Monte Carlo simulations with the host–dopant distance as the only variable, a reduced Coulombic interaction resulting from a larger host–dopant distance contributes to a higher Seebeck coefficient for a given electrical conductivity. Finally, an optimized power factor of 18 µW m<sup>–1</sup> K<sup>–2</sup> is achieved in the doped polymer film. This work provides a facile molecular strategy for selectively improving the Seebeck coefficient and opens up a new route for optimizing the dopant location toward realizing better n-type polymeric thermoelectrics.</p>

Topics
  • impedance spectroscopy
  • simulation
  • copolymer
  • electrical conductivity