Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hippler, Marc

  • Google
  • 3
  • 9
  • 371

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Controlling the shape of 3D microstructures by temperature and light255citations
  • 2019Two in one: Light as a tool for 3D printing and erasing at the microscale73citations
  • 2019Tailoring the mechanical properties of 3D microstructures using visible light post-manufacturing43citations

Places of action

Chart of shared publication
Tanaka, Motomu
1 / 3 shared
Blasco, Eva
3 / 21 shared
Qu, Jingyuan
1 / 2 shared
Bastmeyer, Martin
2 / 5 shared
Wegener, Martin
3 / 33 shared
Messer, Tobias
1 / 1 shared
Batchelor, Rhiannon
1 / 1 shared
Gernhardt, Marvin
1 / 2 shared
Frisch, Hendrik
1 / 5 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Tanaka, Motomu
  • Blasco, Eva
  • Qu, Jingyuan
  • Bastmeyer, Martin
  • Wegener, Martin
  • Messer, Tobias
  • Batchelor, Rhiannon
  • Gernhardt, Marvin
  • Frisch, Hendrik
OrganizationsLocationPeople

article

Tailoring the mechanical properties of 3D microstructures using visible light post-manufacturing

  • Hippler, Marc
  • Gernhardt, Marvin
  • Blasco, Eva
  • Bastmeyer, Martin
  • Frisch, Hendrik
  • Wegener, Martin
Abstract

The photochemistry of anthracene, a new class of photoresist for direct laser writing, is used to enable visible-light-gated control over the mechanical properties of 3D microstructures post-manufacturing. The mechanical and viscoelastic properties (hardness, complex elastic modulus, and loss factor) of the microstructures are measured over the course of irradiation via dynamic mechanical analysis on the nanoscale. Irradiation of the microstructures leads to a strong hardening and stiffening effect due to the generation of additional crosslinks through the photodimerization of the anthracene functionalities. A relationship between the loss of fluorescence—a consequence of the photodimerization—and changes in the mechanical properties is established. The fluorescence thus serves as a proxy read-out for the mechanical properties. These photoresponsive microstructures can potentially be used as “mechanical blank slates”: their mechanical properties can be readily adjusted using visible light to serve the demands of different applications and read out using their fluorescence.

Topics
  • impedance spectroscopy
  • microstructure
  • hardness
  • dynamic mechanical analysis