Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grasl, Christian

  • Google
  • 1
  • 13
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Biodegradable, Self‐Reinforcing Vascular Grafts for In Situ Tissue Engineering Approaches12citations

Places of action

Chart of shared publication
Ehrmann, Katharina
1 / 3 shared
Hager, Pia
1 / 1 shared
Hahn, Clemens
1 / 1 shared
Specht, Sophie J.
1 / 1 shared
Walter, Ingrid
1 / 1 shared
Schneider, Karl H.
1 / 1 shared
Zopf, Lydia M.
1 / 1 shared
Podesser, Bruno K.
1 / 1 shared
Baudis, Stefan
1 / 6 shared
Bergmeister, Helga
1 / 1 shared
Rohringer, Sabrina
1 / 1 shared
Schima, Heinrich
1 / 1 shared
Liska, Robert
1 / 13 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Ehrmann, Katharina
  • Hager, Pia
  • Hahn, Clemens
  • Specht, Sophie J.
  • Walter, Ingrid
  • Schneider, Karl H.
  • Zopf, Lydia M.
  • Podesser, Bruno K.
  • Baudis, Stefan
  • Bergmeister, Helga
  • Rohringer, Sabrina
  • Schima, Heinrich
  • Liska, Robert
OrganizationsLocationPeople

article

Biodegradable, Self‐Reinforcing Vascular Grafts for In Situ Tissue Engineering Approaches

  • Ehrmann, Katharina
  • Grasl, Christian
  • Hager, Pia
  • Hahn, Clemens
  • Specht, Sophie J.
  • Walter, Ingrid
  • Schneider, Karl H.
  • Zopf, Lydia M.
  • Podesser, Bruno K.
  • Baudis, Stefan
  • Bergmeister, Helga
  • Rohringer, Sabrina
  • Schima, Heinrich
  • Liska, Robert
Abstract

<jats:title>Abstract</jats:title><jats:p>Clinically available small‐diameter synthetic vascular grafts (SDVGs) have unsatisfactory patency rates due to impaired graft healing. Therefore, autologous implants are still the gold standard for small vessel replacement. Bioresorbable SDVGs may be an alternative, but many polymers have inadequate biomechanical properties that lead to graft failure. To overcome these limitations, a new biodegradable SDVG is developed to ensure safe use until adequate new tissue is formed. SDVGs are electrospun using a polymer blend composed of thermoplastic polyurethane (TPU) and a new self‐reinforcing TP(U‐urea) (TPUU). Biocompatibility is tested in vitro by cell seeding and hemocompatibility tests. In vivo performance is evaluated in rats over a period for up to six months. Autologous rat aortic implants serve as a control group. Scanning electron microscopy, micro‐computed tomography (µCT), histology, and gene expression analyses are applied. TPU/TPUU grafts show significant improvement of biomechanical properties after water incubation and exhibit excellent cyto‐ and hemocompatibility. All grafts remain patent, and biomechanical properties are sufficient despite wall thinning. No inflammation, aneurysms, intimal hyperplasia, or thrombus formation are observed. Evaluation of graft healing shows similar gene expression profiles of TPU/TPUU and autologous conduits. These new biodegradable, self‐reinforcing SDVGs may be promising candidates for clinical use in the future.</jats:p>

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • tomography
  • gold
  • thermoplastic
  • biocompatibility
  • polymer blend