Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pyrlin, Sergey

  • Google
  • 8
  • 30
  • 18

University of Minho

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024PbSe Quantum Dot Superlattice Thin Films for Thermoelectric Applications4citations
  • 2024PbSe Quantum Dot Superlattice Thin Films for Thermoelectric Applications4citations
  • 2021Large-scale synthesis of semiconducting Cu(In,Ga)Se2 nanoparticles for screen printing application10citations
  • 2014Self-assembling tetrakis-Schiff base compounds for CNT reinforced composites: combined MD, DFT & charge transfer studycitations
  • 2013Multiscale modelling of electron transport in carbon nanotube reinforced compositescitations
  • 2013Multiscale modeling of composite structure-property relations : application to electron transport in carbon nanotube reinforced polymer nanocompositescitations
  • 2012GPGPU-assisted polymer nanocomposite modelling and characterisationcitations
  • 2012Computer modelling of structure-propertity relationship in CNT-Polymer compositescitations

Places of action

Chart of shared publication
Santos Claro, Marcel
1 / 2 shared
Alpuim, Pedro
2 / 5 shared
Mori, Takao
2 / 39 shared
Vieira, E. M. F.
1 / 9 shared
Modin, Evgeny
2 / 4 shared
Kolenko, Yury V.
2 / 19 shared
Farsangi, Siavash Mohammadalizadeh
1 / 1 shared
Freitas, Cátia
2 / 2 shared
Lebedev, Oleg
1 / 21 shared
Sousa, Viviana
2 / 7 shared
Marques, Luis
2 / 4 shared
Kolenko, Yury
1 / 1 shared
Claro, Marcel
1 / 2 shared
Alizadeh, Siavash
1 / 1 shared
Kovnir, Kirill
2 / 13 shared
Goto, Masahiro
1 / 1 shared
Vieira, Eliana
1 / 3 shared
Lebedev, Oleg, I.
1 / 6 shared
Marques, Luis S. A.
1 / 1 shared
Lanceros-Méndez, Senentxu
1 / 387 shared
Ramos, Marta M. D.
6 / 30 shared
Lagrow, Alec P.
1 / 8 shared
Gonçalves, Bruna Ferreira
1 / 1 shared
Botelho, Gabriela
1 / 54 shared
Owens-Baird, Bryan
1 / 1 shared
Zelada-Guillén, Gustavo A.
1 / 1 shared
Escárcega-Bobadilla, Marta V.
1 / 1 shared
Hine, Nicholas D. M.
1 / 3 shared
Matveeva, Anna
1 / 10 shared
Hattum, F. W. J. Van
1 / 20 shared
Chart of publication period
2024
2021
2014
2013
2012

Co-Authors (by relevance)

  • Santos Claro, Marcel
  • Alpuim, Pedro
  • Mori, Takao
  • Vieira, E. M. F.
  • Modin, Evgeny
  • Kolenko, Yury V.
  • Farsangi, Siavash Mohammadalizadeh
  • Freitas, Cátia
  • Lebedev, Oleg
  • Sousa, Viviana
  • Marques, Luis
  • Kolenko, Yury
  • Claro, Marcel
  • Alizadeh, Siavash
  • Kovnir, Kirill
  • Goto, Masahiro
  • Vieira, Eliana
  • Lebedev, Oleg, I.
  • Marques, Luis S. A.
  • Lanceros-Méndez, Senentxu
  • Ramos, Marta M. D.
  • Lagrow, Alec P.
  • Gonçalves, Bruna Ferreira
  • Botelho, Gabriela
  • Owens-Baird, Bryan
  • Zelada-Guillén, Gustavo A.
  • Escárcega-Bobadilla, Marta V.
  • Hine, Nicholas D. M.
  • Matveeva, Anna
  • Hattum, F. W. J. Van
OrganizationsLocationPeople

article

PbSe Quantum Dot Superlattice Thin Films for Thermoelectric Applications

  • Santos Claro, Marcel
  • Alpuim, Pedro
  • Pyrlin, Sergey
  • Mori, Takao
  • Vieira, E. M. F.
  • Modin, Evgeny
  • Kolenko, Yury V.
  • Farsangi, Siavash Mohammadalizadeh
  • Freitas, Cátia
  • Lebedev, Oleg
  • Sousa, Viviana
  • Marques, Luis
Abstract

<jats:title>Abstract</jats:title><jats:p>An unusual self‐assembly pattern is observed for highly ordered 1500‐nm‐thick films of monodisperse 13‐nm‐sized colloidal PbSe quantum dots, originating from their faceted truncated cube‐like shape. Specifically, self‐assembled PbSe dots exhibited attachment to the substrate by &lt;001&gt; planes followed by an interconnection through the {001} facets in plan‐view and {110}/{111} facets in cross‐sectional‐view, thus forming a cubic superlattice. The thermoelectric properties of the PbSe superlattice thin films are investigated by means of frequency domain thermoreflectance, scanning thermal probe microscopy, and four‐probe measurements, and augmented by computational efforts. Thermal conductivity of the superlattice films is measured as low as 0.7 W m<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup> at room temperature due to the developed nanostructure. The low values of electrical conductivity are attributed to the presence of insulating oleate capping ligands at the dots’ surface and the small contact area between the PbSe dots within the superlattice. Experimental efforts aiming at the removal of the oleate ligands are conducted by annealing or molten‐salt treatment, and in the latter case, yielded a promising improvement by two orders of magnitude in thermoelectric performance. The result indicates that the straightforward molten‐salt treatment is an interesting approach to derive thermoelectric dot superlattice thin films over a centimeter‐sized area.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • thin film
  • forming
  • annealing
  • thermal conductivity
  • electrical conductivity
  • quantum dot
  • microscopy