People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tkachenko, Nikolai V.
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Laterally Bound Co Porphyrin on CdTe QD : A Long-Lived Charge-Separated Nanocompositecitations
- 2024Contactless analysis of surface passivation and charge transfer at the TiO 2-Si interfacecitations
- 2024Contactless analysis of surface passivation and charge transfer at the TiO 2-Si interfacecitations
- 2024Transient Absorption Spectroscopy of Filmscitations
- 2024Contactless analysis of surface passivation and charge transfer at the TiO2-Si interfacecitations
- 2023Laterally Bound Co Porphyrin on CdTe QD : A Long-Lived Charge-Separated Nanocompositecitations
- 2023Is Carrier Mobility a Limiting Factor for Charge Transfer in Tio2/Si Devices? A Study by Transient Reflectance Spectroscopycitations
- 2022Tunable Ti3+-Mediated Charge Carrier Dynamics of Atomic Layer Deposition-Grown Amorphous TiO2citations
- 2021Comparison of the heat-treatment effect on carrier dynamics in TiO2 thin films deposited by different methodscitations
- 2020Optimization of photogenerated charge carrier lifetimes in ald grown tio2 for photonic applicationscitations
- 2020Monitoring Charge Carrier Diffusion across a Perovskite Film with Transient Absorption Spectroscopycitations
- 2019Multiphoton Excitation of CsPbBr3 Perovskite Quantum Dots (PQDs) : How Many Electrons Can One PQD Donate to Multiple Molecular Acceptors?citations
- 2019Electronically Coupled Uranium and Iron Oxide Heterojunctions as Efficient Water Oxidation Catalystscitations
- 2019Electronically Coupled Uranium and Iron Oxide Heterojunctions as Efficient Water Oxidation Catalystscitations
- 2019Refractive index change dominates the transient absorption response of metal halide perovskite thin films in the near infraredcitations
- 2018Critical role and modification of surface states in hematite films for enhancing oxygen evolution activitycitations
- 2017Tailored Fabrication of Transferable and Hollow Weblike Titanium Dioxide Structurescitations
- 2015Subpicosecond to Second Time-Scale Charge Carrier Kinetics in Hematite-Titania Nanocomposite Photoanodescitations
- 2015Subpicosecond to Second Time-Scale Charge Carrier Kinetics in Hematite-Titania Nanocomposite Photoanodescitations
Places of action
Organizations | Location | People |
---|
article
Electronically Coupled Uranium and Iron Oxide Heterojunctions as Efficient Water Oxidation Catalysts
Abstract
<p>The most critical challenge faced in realizing a high efficiency photoelectrochemical water splitting process is the lack of suitable photoanodes enabling the transfer of four electrons involved in the complex oxygen evolution reaction (OER). Uranium oxides are efficient catalysts due to their wide range optical absorption (E-g approximate to 1.8-3.2 eV), high photoconductivity, and multiple valence switching among uranium centers that improves the charge propagation kinetics. Herein, thin films of depleted uranium oxide (U3O8) are demonstrated grown via chemical vapor deposition effectively accelerate the OER in conjunction with hematite (alpha-Fe2O3) overlayers through a built-in potential at the interface. Density functional theory simulations demonstrate that the multivalence of U and Fe ions induce the adjustment of the band alignment subject to the concentration of interfacial Fe ions. In general, the equilibrium state depicts a type II band edge as the favored alignment, which improves charge-transfer processes as observed in transient and X-ray absorption (TAS and XAS) spectroscopy. The enhanced water splitting photocurrent density of the heterostructures (J = 2.42 mA cm(-2)) demonstrates the unexplored potential of uranium oxide in artificial photosynthesis.</p>