Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Morits, Maria

  • Google
  • 6
  • 26
  • 398

Aalto University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2021Cellulose nanofibers/lignin particles/tragacanth gum nanocomposite hydrogels for biomedical applicationscitations
  • 2020Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel106citations
  • 2020Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel106citations
  • 2018Surface Engineering of Nanomaterials for Biomimetic and Hybrid Applications36citations
  • 2017Toughness and Fracture Properties in Nacre-Mimetic Clay/Polymer Nanocomposites128citations
  • 2014Multifunctional stretchable metasurface for the THz range22citations

Places of action

Chart of shared publication
Teixeira Polez, Roberta
1 / 2 shared
Österberg, Monika
3 / 26 shared
Valle-Delgado, Juan José
3 / 8 shared
Ajdary, Rubina
2 / 9 shared
Linder, Markus B.
1 / 16 shared
Farooq, Muhammad
2 / 12 shared
Sipponen, Mika H.
1 / 5 shared
Jonkergouw, Christopher
2 / 2 shared
Ora, Ari
2 / 4 shared
Huan, Siqi
2 / 3 shared
Zhang, Xue
2 / 6 shared
Linder, Markus
1 / 10 shared
Sipponen, Mika Henrikki
1 / 1 shared
Rojas, Orlando
1 / 5 shared
Gröschel, André H.
1 / 5 shared
Verho, Tuukka
1 / 13 shared
Liljeström, Ville
1 / 6 shared
Kostiainen, Mauri A.
1 / 11 shared
Sorvari, Juhana
1 / 1 shared
Ikkala, Olli
1 / 33 shared
Morits, Dmitry
1 / 2 shared
Tamminen, Aleksi
1 / 6 shared
Tretyakov, Sergei
1 / 14 shared
Simovski, Constantin
1 / 4 shared
Omelyanovich, Mikhail
1 / 2 shared
Ovchinnikov, Victor
1 / 2 shared
Chart of publication period
2021
2020
2018
2017
2014

Co-Authors (by relevance)

  • Teixeira Polez, Roberta
  • Österberg, Monika
  • Valle-Delgado, Juan José
  • Ajdary, Rubina
  • Linder, Markus B.
  • Farooq, Muhammad
  • Sipponen, Mika H.
  • Jonkergouw, Christopher
  • Ora, Ari
  • Huan, Siqi
  • Zhang, Xue
  • Linder, Markus
  • Sipponen, Mika Henrikki
  • Rojas, Orlando
  • Gröschel, André H.
  • Verho, Tuukka
  • Liljeström, Ville
  • Kostiainen, Mauri A.
  • Sorvari, Juhana
  • Ikkala, Olli
  • Morits, Dmitry
  • Tamminen, Aleksi
  • Tretyakov, Sergei
  • Simovski, Constantin
  • Omelyanovich, Mikhail
  • Ovchinnikov, Victor
OrganizationsLocationPeople

article

Toughness and Fracture Properties in Nacre-Mimetic Clay/Polymer Nanocomposites

  • Gröschel, André H.
  • Verho, Tuukka
  • Liljeström, Ville
  • Morits, Maria
  • Kostiainen, Mauri A.
  • Sorvari, Juhana
  • Ikkala, Olli
Abstract

| openaire: EC/FP7/291364/EU//MIMEFUN ; Nacre inspires researchers by combining stiffness with toughness by its unique microstructure of aligned aragonite platelets. This brick-and-mortar structure of reinforcing platelets separated with thin organic matrix has been replicated in numerous mimics that can be divided into two categories: microcomposites with aligned metal oxide microplatelets in polymer matrix, and nanocomposites with self-assembled nanoplatelets-usually clay or graphene oxide-and polymer. While microcomposites have shown exceptional fracture toughness, current fabrication methods have limited nacre-mimetic nanocomposites to thin films where fracture properties remained unexplored. Yet, fracture resistance is the defining property of nacre, therefore centrally important in any mimic. Furthermore, to make use of these properties in applications, bulk materials are required. Here, up to centimeter-thick nacre-mimetic clay/polymer nanocomposites are produced by the lamination of self-assembled films. The aligned clay nanoplatelets are separated by poly(vinyl alcohol) matrix, with 106-107 nanoplatelets on top of each other in the bulk plates. Fracture testing shows crack deflection and a fracture toughness of 3.4 MPa m1/2, not far from nacre. Flexural tests show high stiffness (25 GPa) and strength (220 MPa) that, despite the hydrophilic constituents, are not substantially affected by exposure to humidity. ; Peer reviewed

Topics
  • nanocomposite
  • impedance spectroscopy
  • microstructure
  • polymer
  • thin film
  • crack
  • strength
  • bending flexural test
  • fracture toughness
  • alcohol
  • self-assembly
  • aligned