Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Van, H. P. C. Kuringen

  • Google
  • 1
  • 4
  • 107

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Responsive nanoporous smectic liquid drystal polymer networks as efficient and selective adsorbents107citations

Places of action

Chart of shared publication
Broer, Dj Dirkdick
1 / 65 shared
Shishmanova, I. K.
1 / 2 shared
Eikelboom, G. M.
1 / 2 shared
Schenning, Aphj Albert
1 / 37 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Broer, Dj Dirkdick
  • Shishmanova, I. K.
  • Eikelboom, G. M.
  • Schenning, Aphj Albert
OrganizationsLocationPeople

article

Responsive nanoporous smectic liquid drystal polymer networks as efficient and selective adsorbents

  • Broer, Dj Dirkdick
  • Shishmanova, I. K.
  • Eikelboom, G. M.
  • Van, H. P. C. Kuringen
  • Schenning, Aphj Albert
Abstract

An efficient and selective porous nanostructured polymer adsorbent is prepared from smectic liquid crystals. The adsorption study is performed by using hydrophilic dyes as water pollutants. The anionic pore interior of the nanoporous polymer is able to selectively adsorb cationic methylene blue over anionic methyl orange. Even zwitter ionic rhodamine B could hardly be adsorbed due to the presence of the anionic group in this dye. The confined pore dimensions allow size selective adsorption; a 4th generation cationic dendrimer is not able to diffuse into the nanometer sized pores. The porous nature of the polymer provides easy and fast accessibility of all adsorption sites. Stoichiometric ion exchange is obtained, which equates to an adsorption capacity of nearly 1 gram of methylene blue per 1 gram adsorbent. A competitive Langmuir adsorption constant and pseudo second order rate constant are determined. The adsorbent and adsorbate could both be retrieved after acid treatment of the polymer.

Topics
  • porous
  • impedance spectroscopy
  • pore
  • dendrimer
  • liquid crystal