Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

José-Yacaman, Miguel

  • Google
  • 1
  • 8
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Tuning the porosity of bimetallic nanostructures by a soft templating approach33citations

Places of action

Chart of shared publication
Etcheberry, Arnaud
1 / 24 shared
Remita, Hynd
1 / 6 shared
Dieudonné, Philippe
1 / 2 shared
Beaunier, Patricia
1 / 26 shared
Lehoux, Anaïs
1 / 4 shared
Uribe, Daniel Bahena
1 / 3 shared
Ramos, Laurence
1 / 17 shared
Audonnet, Fabrice
1 / 8 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Etcheberry, Arnaud
  • Remita, Hynd
  • Dieudonné, Philippe
  • Beaunier, Patricia
  • Lehoux, Anaïs
  • Uribe, Daniel Bahena
  • Ramos, Laurence
  • Audonnet, Fabrice
OrganizationsLocationPeople

article

Tuning the porosity of bimetallic nanostructures by a soft templating approach

  • Etcheberry, Arnaud
  • Remita, Hynd
  • Dieudonné, Philippe
  • José-Yacaman, Miguel
  • Beaunier, Patricia
  • Lehoux, Anaïs
  • Uribe, Daniel Bahena
  • Ramos, Laurence
  • Audonnet, Fabrice
Abstract

We use hexagonal mesophases made of oil-swollen surfactant-stabilized tubes arranged on a triangular lattice in water and doped with metallic salts as templates for the radiolytic synthesis of nanostructures. The nanostructures formed in this type of soft matrix are bimetallic palladium-platinum porous nanoballs composed of 3D-connected nanowires, of typical thickness 2.5 nm, forming hexagonal cells. We demonstrate using electron microscopy and small-angle X-ray scattering that the pore size of the nanoballs is directly determined by the diameter of the oil tube of the doped mesophases, which we have varied in a controlled fashion from 10 to 55 nm. Bimetallic nanostructures comprising various proportions of palladium and platinum can be synthesized. Their alloy structure was evidenced by X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, and high-angular dark field scanning transmission electron microscopy experiments. Our templating approach allows therefore the synthesis of bimetallic nanoballs of tunable porosity and composition.

Topics
  • porous
  • impedance spectroscopy
  • pore
  • experiment
  • x-ray photoelectron spectroscopy
  • Platinum
  • transmission electron microscopy
  • forming
  • Energy-dispersive X-ray spectroscopy
  • porosity
  • surfactant
  • X-ray scattering
  • palladium