Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Förner, Andreas

  • Google
  • 10
  • 52
  • 105

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2023Influence of Cu Addition and Microstructural Configuration on the Creep Resistance and Mechanical Properties of an Fe‐Based $α/α′/α^{″}$ Superalloy2citations
  • 2023Using Selective Electron Beam Melting to Enhance the High-Temperature Strength and Creep Resistance of NiAl–28Cr–6Mo In Situ Composites4citations
  • 2023Deformation Mechanisms in Compositionally Complex Polycrystalline CoNi-Base Superalloys: Influence of Temperature, Strain-Rate and Chemistry6citations
  • 2023Numerical Design of CoNi-Base Superalloys With Improved Casting Structure3citations
  • 2023Influence of Cu Addition and Microstructural Configuration on the Creep Resistance and Mechanical Properties of an Fe‐Based α/α′/α″ Superalloy2citations
  • 2022Crack‐Free Welding of a Co‐Base Superalloy with High γ' Precipitate Fraction4citations
  • 2022Metal fused filament fabrication of the nickel-base superalloy IN 71835citations
  • 2021Correlation Between Local Chemical Composition and Formation of Different Types of Ordered Phases in the Polycrystalline Nickel‐Base Superalloy A718Plus10citations
  • 2020Nanoscaled eutectic NiAl-(Cr,Mo) composites with exceptional mechanical properties processed by electron beam melting18citations
  • 2020Combining Experiments and Atom Probe Tomography‐Informed Simulations on γ′ Precipitation Strengthening in the Polycrystalline Ni‐Base Superalloy A718Plus21citations

Places of action

Chart of shared publication
Zenk, Christopher
1 / 4 shared
Bezold, Andreas
2 / 5 shared
Merle, Benoit
2 / 87 shared
Holz, Hendrik
2 / 4 shared
Neumeier, Steffen
9 / 118 shared
Morales, Luis
1 / 1 shared
Körner, Carolin
4 / 199 shared
Hausmann, Daniel
2 / 3 shared
Göken, Mathias
7 / 350 shared
Krapf, A.
1 / 4 shared
Körner, C.
2 / 9 shared
Hausmann, D.
1 / 8 shared
Jamjoom, Abdullah
1 / 1 shared
Fu, Zongwen
1 / 5 shared
Neumeier, S.
2 / 63 shared
Jamjoom, A.
1 / 1 shared
Wahlmann, Benjamin
2 / 9 shared
Vollhüter, Jan
1 / 2 shared
Förner, A.
1 / 3 shared
Wahlmann, B.
1 / 3 shared
Fu, Z.
1 / 15 shared
Krapf, Anna
1 / 8 shared
Vollhüter, J.
1 / 9 shared
Bezold, A.
1 / 16 shared
Huber, L.-K.
1 / 2 shared
Völkl, J.
1 / 2 shared
Freund, L. P.
1 / 18 shared
Bandorf, Jakob
1 / 2 shared
Pröbstle, Johannes
1 / 1 shared
Markl, Matthias
1 / 20 shared
Multerer, Kerstin
1 / 1 shared
Volz, Nicklas
1 / 5 shared
Zenk, Christopher H.
1 / 14 shared
Morales, Luis Ángel
1 / 1 shared
Burbaum, Bernd
1 / 1 shared
Stöhr, Britta
1 / 1 shared
Haußmann, Lukas
1 / 5 shared
Freund, Lisa
1 / 2 shared
Gonzalez-Gutierrez, Joamin
1 / 57 shared
Felfer, Peter Johann
4 / 72 shared
Thompson, Yvonne
1 / 4 shared
Zissel, Kai
1 / 1 shared
Kukla, Christian
1 / 52 shared
Pröbstle, Martin
2 / 3 shared
Hünert, Daniela
1 / 2 shared
Giese, S.
1 / 6 shared
Arnold, C.
1 / 22 shared
Bitzek, Erik
1 / 69 shared
Houllé, Frédéric
1 / 1 shared
Huenert, Daniela
1 / 1 shared
Kirchmayer, Andreas
1 / 5 shared
Lyu, Hao
1 / 5 shared
Chart of publication period
2023
2022
2021
2020

Co-Authors (by relevance)

  • Zenk, Christopher
  • Bezold, Andreas
  • Merle, Benoit
  • Holz, Hendrik
  • Neumeier, Steffen
  • Morales, Luis
  • Körner, Carolin
  • Hausmann, Daniel
  • Göken, Mathias
  • Krapf, A.
  • Körner, C.
  • Hausmann, D.
  • Jamjoom, Abdullah
  • Fu, Zongwen
  • Neumeier, S.
  • Jamjoom, A.
  • Wahlmann, Benjamin
  • Vollhüter, Jan
  • Förner, A.
  • Wahlmann, B.
  • Fu, Z.
  • Krapf, Anna
  • Vollhüter, J.
  • Bezold, A.
  • Huber, L.-K.
  • Völkl, J.
  • Freund, L. P.
  • Bandorf, Jakob
  • Pröbstle, Johannes
  • Markl, Matthias
  • Multerer, Kerstin
  • Volz, Nicklas
  • Zenk, Christopher H.
  • Morales, Luis Ángel
  • Burbaum, Bernd
  • Stöhr, Britta
  • Haußmann, Lukas
  • Freund, Lisa
  • Gonzalez-Gutierrez, Joamin
  • Felfer, Peter Johann
  • Thompson, Yvonne
  • Zissel, Kai
  • Kukla, Christian
  • Pröbstle, Martin
  • Hünert, Daniela
  • Giese, S.
  • Arnold, C.
  • Bitzek, Erik
  • Houllé, Frédéric
  • Huenert, Daniela
  • Kirchmayer, Andreas
  • Lyu, Hao
OrganizationsLocationPeople

article

Influence of Cu Addition and Microstructural Configuration on the Creep Resistance and Mechanical Properties of an Fe‐Based α/α′/α″ Superalloy

  • Zenk, Christopher H.
  • Bezold, Andreas
  • Merle, Benoit
  • Förner, Andreas
  • Holz, Hendrik
  • Neumeier, Steffen
  • Morales, Luis Ángel
  • Körner, Carolin
Abstract

<jats:sec><jats:label /><jats:p>Introducing Cu nanoparticles is an effective mechanism for strengthening and toughening Fe‐based materials such as ultra‐high‐strength steels. Herein, the effect of Cu on the mechanical properties of a novel Fe‐based α/α′/α″ superalloy is studied. Compared to a Cu‐free reference alloy, nanoindentation reveals an increase in hardness, which was associated with the formation of Cu nanoparticles. Both alloys show room temperature (RT) compressive plastic strain at maximum stress greater than 8%, irrespective of the heat‐treatment. At RT and at 750 °C, the Cu‐containing alloy exhibits a slightly higher strength, but the heat treatment has a more significant impact: A configuration of α‐matrix and intermetallic α′/α″‐phases forming an interpenetrating network is superior to a state with isolated precipitates. This difference vanishes in monotonic creep experiments, and under the same conditions, the Cu‐containing alloy exhibits a twice as high creep rate despite a slightly higher precipitate fraction. This is linked to a higher lattice misfit and faster‐coarsening kinetics. Post‐mortem transmission electron microscopy analysis of the creep‐deformed specimens identifies dislocation bypass as the dominant deformation mechanism. However, the presence of &lt;010&gt;{110} dislocations in the interfacial networks and evidence of dislocation activity within α′/α″ precipitates suggest the occurrence of shearing events.</jats:p></jats:sec>

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • phase
  • experiment
  • strength
  • steel
  • hardness
  • nanoindentation
  • transmission electron microscopy
  • dislocation
  • precipitate
  • forming
  • deformation mechanism
  • intermetallic
  • interfacial
  • size-exclusion chromatography
  • creep
  • superalloy