People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Endler, Dirk
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Coarse‐Grained Refractory Composite Castables Based on Alumina and Niobium
Abstract
Niobium-alumina composite aggregates with 60 vol% metal content and with particle sizes up to 3150 μm are produced using castable technology followed by sintering, and a crushing and sieving process. X-Ray diffraction (XRD) analysis reveals phase separation during crushing as the niobium:corundum volume ratios is between 37:57 and 64:31 among the 4 produced aggregate classes 0–45, 45–500, 500–1000, and 1000–3150 μm. The synthesized aggregates are used to produce coarse-grained refractory composites in a second casting and sintering step. The fine- and coarse-grained material shows porosities between 32% and 36% with a determined cold modulus of rupture of 20 and 12 MPa, and E-moduli of 37 and 46 GPa, respectively. The synthesized fine-grained composites reached true strain values between 0.08 at 1100 °C and 0.18 at 1500 °C and the coarse-grained ones values between 0.02 and 0.09. The electrical conductivity for the fine-grained and the coarse-grained material is 448±66 and 111±25 S cm$^{−1}$, respectively.